Relationship between the grid size and the coefficient of subgrid-scale diffusion in a finite difference advection-diffusion equation*

Keiko YOKOYAMA** and Kenzo TAKANO**

A false oscillation with a wave length of two times the grid size arises from a finite difference advection- diffusion equation if the grid size is greater than a critical value determined by the coefficient of subgrid-scale diffusion.

For simplicity, a one-dimensional, steady state advection-diffusion equation is dealt with;

$$u\frac{\partial T}{\partial x} = -B\frac{\partial^4 T}{\partial x^4},\qquad (1)$$

where u is the x-component of the velocity assumed to be positive, T is a state variable, say, temperature, and B is the coefficient of subgrid-scale diffusion. Both u and B are assumed to be constant.

Instead of the biharmonic form $-B\hat{\sigma}^4T/\partial x^4$, the diffusion term is conventionally written in harmonic form as $A\hat{\sigma}^2T/\partial x^2$.

The relationship between A and B is determined as follows (SEMTNER and MINTZ, 1977).

When centered differencing is used, both terms are approximated by

$$-B\frac{\partial^{4}T}{\partial x^{4}} = -B$$

$$\times \frac{T_{n+2} - 4T_{n+1} + 6T_{n} - 4T_{n-1} + T_{n-2}}{(\Delta x)^{4}}, \quad (2)$$

$$A\frac{\partial^{2}T}{\partial x^{2}} = A\frac{T_{n+1} - 2T_{n} + T_{n-1}}{(\Delta x)^{2}}, \qquad (3)$$

where Δx is the grid size, $T_{n\pm 2}$, $T_{n\pm 1}$ and T_n are the temperatures at the $(n\pm 2)$, $(n\pm 1)$ and nth grid points. With $T=qe^{ikx}$ $(i=\sqrt{-1})$, the right-hand side of (2) becomes

$$-q\frac{16B}{(\Delta x)^4} \left(\sin\frac{k\Delta x}{2}\right)^4, \qquad (4)$$

and that of (3) becomes

$$-q\frac{4A}{(\Delta x)^2}\left(\sin\frac{k\Delta x}{2}\right)^2. \tag{5}$$

The shortest wave length resolvable by a grid size of Δx is $2\Delta x$, so that $\sin(k\Delta x/2)=1$. If the magnitude of (4) is made equal to that of (5) at this shortest wave length, then it follows that

Fig. 1. Amplification factors δ_m obtained from the finite difference equation and amplification factors δ_m' obtained from the differential equation. Real and imaginary parts $R(\delta)$ and $I(\delta)$ are shown if δ_m are complex numbers.

^{*} Received March 28, 1986

^{**} School of Environmental Sciences, University of Tsukuba, Ibaraki-ken, 305 Japan

$$B = (\Delta x)^2 A/4$$
 (6)

When the amplification factor is denoted by δ , the centered differencing of Eq. (1) leads to

$$\begin{array}{l} \delta^4\!+\!(0.5d\!-\!4)\delta^3\!+\!6\delta^2\\ -\!(0.5d\!+\!4)\delta\!+\!1\!=\!0\;, \end{array} (7)$$

where

$$d = (u/B)^{1/3} \Delta x . \tag{8}$$

Figure 1 shows the four roots δ_m (m=1,...,4) as functions of d. The real and imaginary parts are shown for δ_3 and δ_4 if these are complex numbers.

On the other hand, substitution of $T \propto e^{\sigma x}$ into (1) leads to

$$u \sigma = -B\sigma^4$$

which gives

$$\begin{split} &\sigma_1 \!=\! 0\;, \\ &\sigma_2 \!=\! -(u/B)^{1/3}, \\ &\sigma_{3,\,4} \!=\! (u/B)^{1/3} \frac{1 \!\pm\! \sqrt{3}i}{2}. \end{split}$$

The amplification factors δ_m' to be compared with δ_m are given by $\exp(\Delta x \cdot \sigma_m)$ $(m=1,\ldots,4)$, which are also shown in Fig. 1. The real and imaginary parts are shown for δ_3' and δ_4' . Obviously δ_1 is identical with δ_1' $(\delta_1 = \delta_1' = 1)$ irrespective of d. No significant difference is found between δ_2 and δ_2' in the practical range of d. As is readily seen however, δ_3 and δ_4 are qualitatively different from δ_3' and δ_4' for d < 2.748, although they agree well with δ_3' and δ_4' for d < 2.0. Both δ_3 and δ_4 are real, negative

numbers for d>2.748, which gives rise to a false oscillation with a wave length of $2\Delta x$.

The condition necessary for getting a solution of Eq. (1) turns out to be

$$d < 2.748$$
, (9)

or with (6) and (8),

$$0.193 \, u \Delta x < A$$
 . (10)

When the diffusion term is formulated by $A\partial^2 T/\partial x^2$, the condition (TAKANO, 1974) corresponding to (10) is

$$0.5 \, u \Delta x < A \,. \tag{11}$$

Therefore, compared with harmonic diffusion, biharmonic diffusion allows a smaller A for a given Δx , or a larger Δx for a given A. This is an advantage of $-B\partial^4T/\partial x^4$ over $A\partial^2T/\partial x^2$. As already pointed out (SEMTNER and MINTZ, 1977), the primary advantage is that the biharmonic formulation is highly scale selective because of a factor of $(\sin k\Delta x/2)^4$ in (4) in place of a factor of $(\sin k\Delta x/2)^2$ in (5); the ratio of $-B\partial^4T/\partial x^4$ to $A\partial^2T/\partial x^2$ is 0.095 for a wave length of $10\Delta x$ and 0.024 for a wave length of $20\Delta x$. Biharmonic formulation brings about very weak diffusion for wave lengths larger than $2\Delta x$.

References

SEMTNER, A.J. and Y. MINTZ (1977): Numerical simulation of the Gulf Stream and mid-ocean eddies. J. Phys. Oceanogr., 7, 208-230.

TAKANO, K. (1974): Finite differencing of the advection term. J. Oceanogr. Soc. Japan, 30, 207–208. (in Japanese)

移流・拡散差分方程式での格子間隔とうず拡散係数の関係

横 山 恵 子・高 野 健 三

要旨: 移流・拡散差分方程式で重調和関数形の拡散項を用いた場合,正しい近似解を得るための拡散係数の大きさ-格子間隔の関係を調べた。これまでしばしば使われてきた調和関数形に比べて,重調和関数形には,拡散が弱いにもかかわらず,大きな格子間隔を使えるという利点がある。 長波長の変化に対しては,この利点はますます大きくなる。