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Temperature and Salinity Changes in the Tsushima Current*

Ronald L. KOLPACK**

Abstract: Temperature and salinity relationships in the Japan Sea during 1968-1978 show
that much of the water entering through Tsushima Strait is transported northeastward along
the western margin of Japan and exits through Tsugaru Strait. A frontal zone exists in the
central area where cold, low salinity water from the north contacts warm, high salinity water
in the Tsushima Current. Interaction of these two near-surface water types results in boundary
processes dominated by meanders and eddies. Some eddies, characterized by a high tempera-
ture and salinity core, move northward until mixing destroys their integrity within a distance
of about 100-150 km. The position and character of the frontal zone appear to be controlled
primarily by the strength of flow from the Kuroshio Current and secondarily by bottom

topography in the Japan Sea.

1. Introduction

The Japan Sea is a northeast-southwest trend-
ing marginal sea bordered on the west by the
Asian Continent and on the east by the Japanese
Island Arc. There are three main avenues
of access: Tsushima Strait between Korea and
Japan at the southern end, Tsugaru Strait be-
tween Honshu and Hokkaido in the northeast,
and Soya Strait north of Hokkaido. The bathy-
metry of the Japan Sea is characterized by a
series of basins, plateaus, banks and troughs.
The three largest basins are: Tsushima Basin
at the southern end, Yamato Basin on the
eastern side, and Japan Basin at the northern
end. These basins are separated by a plateau
and rise complex in the central area. In addi-
tion, a Continental Borderland province exists
adjacent to the western margin of Japan (Mogai,
1972; ISHIBASHI and HONZzA, 1978; ONODERA
and HoNza, 1978; INOUE and Honza, 1979).

The oceanography of the Japan Sea has been
investigated since the early part of this century
and the main water masses have been discussed
previously (e.g. YASUI ez al., 1967). However,
there are some differences in terminology be-
tween investigators. For the purpose of this
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study, the general classification described by
KAJIURA et al. (1958) as reviewed by MORIYASU
(1972a) is used. Most of the water is relatively
homogeneous and consists. of deep and bottom
water with a temperature below 0.6°C, salinity
of about 34.0 to 34.1 %0, and oxygen content of
5.0 to 5.5ml/l. Above this water mass are the
intermediate and surface waters, with more
variable properties as a result of the influence
of cold northern .and warm -southern origins.
The sinking of low salinity surface water from
the north produces another water mass that is
situated between the intermediate and deep
waters.

Probably the most intriguing aspect of the
oceanography of the Japan Sea is the complexity
and variability of the upper several hundred
meters of the water column in the southern
area. In that regard, the spatial distribution
and behavior of the warm water introduced
through Tsushima Strait are particularly fascinat-
ing. This water, with a high temperature and
salinity and relatively low oxygen content, is
derived from the Kuroshio Current (Fig. 1).
After entering the Japan Sea it generally flows
northeastward along the eastern margin (SVERD-
RUP et al., 1942; TANIOKA, 1962). But there
is considerable variability in the spatial location
of this water, which has been designated the
Tsushima Current (MORIYASU, 1972b; KANO,
1980). As a result, several models have been



200 La mer 20, 1982

° o
130 140

advanced to outline the behavior of the current.

One of these involves the idea that the spatial
variation results from branching of the current,
and the other concept relies primarily on
meandering to explain the observed location of
the current (MORIYASU, 1972a).
Much of the work on the water movement a0

in the Japan Sea has been based on temperature
owing to the marked contrast between the cold

northern water and warm water which enters
through Tsushima Strait. Additional work has
been done on the distribution of salinity and
dissolved oxygen (e.g. ICHIYE, 1954; TANIOKA,
1662; KANO, 1980). However, it is not evident of

that the distribution of salinity has received an % Saoms |
adequate amount of attention, as suggested by I TSUSHIMA
MATSUDAIRA (1965). Salinity is the most con- :: :::’:J"
servative property of the water that is derived E==-riateau
from the Kuroshio Current. Therefore, at- A. KOREA
tempts to understand the behavior of the Tsu- B A I 8.|vAMATO
shima Current would appear to benefit from Fig. 1. Location map of study area (inset). The

ional hasi he distribut; position of the Kuroshio Current is'a generalized
additional work that emphasized the distribution scheme modified after KAWAT (1972). The

of salinity—particularly in the upper part of the major geomorphological features in the Japan
water column where the values exhibit the Sea are modified after MOGI (1972).
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Fig. 2. Hydrographic sections in the Japan Sea showing salinity plotted with respect to
temperature and geographic location during October, 1969. The solid line along the top
of each section represents surface water temperature. The dashed line near the bottom

_of some sections represents the water temperature at the bottom. Station and sample
control are represented by solid circles. In some cases the contour interval changes near
the surface in order to simplify the illustrations.
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greatest variation. One method of doing this
involves contouring ischalines with respect to
temperature and geographic location, as outlined

by BRUCE (1981).

2. Approach

After inspecting about 25 years of hydrographic
data from the area, 11 years (JAPAN METEORO-
LOGICAL AGENCY, 1968-1978) were selected
for more detailed analysis. The most complete
.coverage for this period was for July-August
:and February-March. Additional field work
was carried out during May and November.
However, most of the available values for the
latter times are restricted to a few profiles in
the central portion of the Japan Sea.

About 75 hydrographic sections for the 11
year period were contoured to illustrate the
-distribution of isohalines. The technique empha-
sizes the variation of salinity where the range
of temperature is largest. Consequently, the
focus is on the surface and intermediate waters,
which allows one to delineate the positions of
the southern high salinity current and the lower
salinity water from the north. When salinity
is plotted with respect to potential temperature,
the slope of the isohalines denotes the magnitude
of changes in potential temperature-salinity
relationships. Inasmuch asthe range of tempera-
ture values of interest represents depths of less
than 1000 meters, the difference between observ-
ed temperature and potential temperature is
very small. Therefore, areas where the isoha-
lines have a steep slope also represent large
changes in temperature-salinity relationships in
the hydrographic sections that were constructed
for this study. It should be noted that this
technique is particularly effective for the temper-
atures present during the warm water season,
but it is not as useful when and where the cold
water regime is dominant. Nevertheless, this
method depicts the position of the high salinity
core that is characteristic of the Tsushima
Current and also illustrates the interaction of
the current with cold northern water along the
frontal zone. Another evaluation of the Tsu-
shima Current was conducted by determining
the areal distribution of isohalines at the level
of maximum salinity, thus permitting one to

visualize the continuity of the layer.

3. Results

The most extensive information available was
for October, 1969. Ten sections in the Japan
Sea were constructed to outline the position of
the high salinity core (Fig. 2). The maximum
observed salinity in Tsushima Strait was about
34.3 %0. But, core water with a salinity of 34.5
%o is present between 36°N and 39°N. If the
higher salinity water in the latter area was
derived from the Kuroshio Current, as seems
probable (MORIYASU, 1972a), then there must
have been a change in the water entering
Tsushima Strait during this period, or there is
a near-bottom flow of higher salinity water that
was not detected. The low slope of isohalines
at the bottom of the high salinity core between
36°N and 38°N suggest that there is little change
in this zone. Farther north, between 39°N and
40°N (profiles 5 and 6) the slope of isohalines
surrounding the high salinity core are more

(]
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Fig. 3. Areal distribution of salinity at the level
of maximum salinity in the near-surface layer.
Station control is represented by solid circles.
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steeply inclined. This pattern is interpreted to
be a result of modifications by lower salinity
water from the north. The dominant factor
creating this distribution of isohalines appears
to be an intrusion of low salinity water north-
west of Sado Island, which results in a separation
of the high salinity core water into two units.
The large area occupied by the high salinity
core in the central portion of the Japan Sea at
39°N (profile 6) is considerably reduced at 40°N
and is not evident at 41°N (profile 4). All of
these profiles, however, clearly illustrate the
high salinity core along the coast of Japan as
far north as northern Hokkaido. The relatively
rapid reduction in salinity west of Hokkaido
and eventual disappearance of the unit in the

northern profiles suggest that the flow of the
high salinity core along Japan is significantly
reduced north of Tsugaru Strait.

On the western side of the Japan Sea there
is evidence for an influx of low salinity surface
water which flows southward along the coast
of Korea. The distribution of isohalines in the
near-surface water in the western part of profiles
7-9 (Fig. 2) indicates that southward penetration
of low salinity water in this area results in a
small near-coastal separation of the high salinity
core at about the 15°C level. Another feature
evident in the profiles through the central portion
of the Japan Sea during this time is that there
is a general increase in surface water tempera-
ture associated with the position of the high

TEMPERATURE °C
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Fig. 4. Hydrographic sections in the Japan Sea showing distribution of salinity with respect
to temperature and geographic location during July-August, 1970. Profile numbers and
station control are shown on the inset map. Same convention used as described in the

caption for Fig. 2.
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Fig. 5. Hydrographic sections showing temperature-salinity relationships
in the Japan Sea during July-August, 1975.

203



204 La mer 20, 1982

salinity core.

The areal distribution of the near-surface high
salinity layer can be illustrated more clearly by
contouring the maximum salinity values within
this layer for all stations occupied during the
period. The resultant isohalines (Fig. 3) show
a dominant pattern of high salinity values in
the eastern portion of the Japan Sea. In addi-

tion, the southeastward cxtension of lower
salinity water northwest of Sado Island, which
was mentioned previously, is clearly outlined.
Other features include a sharp frontal zone
through the Japan Sea and isolated segments of
higher salinity water denoted by the 34.5 %o
isohaline. The pattern of ischalines along the
frontal zone during October, 1969 can be inter-

., 130° 135° 140°

7 JULY 19-AUG. 18, 1972

SALINITY %o

Fig. 6. Areal distribution of salinity at the level of maximum salinity in the near-surface
layer for July-August, 1968-1978. Solid circles represent station control.
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preted as evidence for considerable meandering
of the Tsushima Current. However, it is diffi-
cult to support the interpretation that there is
a branching of the Tsushima Current as sug-
gested by OHWADA and TANIOKA (1972).

Hydrographic sections for two additional
periods (July-August, 1970 and 1975) are also
illustrated (Figs. 4-5) in order to outline features
of the near-surface high salinity core which
were evident at other times during the 11 year
period. During 1970 the sections (Fig. 4) also
show a division in the high salinity core in the
central portion of the Japan Sea owing to an
intrusion of near-surface water of lower salinity.
In this case, however, there is a clear demonst-
ration that a portion of high salinity water in
the northwestern portion of profile 4 has become
isolated from the main high salinity core (Fig.
6). The separation along the frontal boundary
is indicative of an eddy that probably formed
as a result of the meandering nature of the
Tsushima Current in this region.

In July-August, 1975, warm water with a
maximum salinity of 34.5% was detected in
the eastern channel of Tsushima Strait; where-
as, somewhat colder water with a much lower
salinity was predominant in the western channel

130° 135°

155914

(Fig. 5, profile 1)..» The ‘latter+feature is pro-
bably a reflection of the influx of water from
the Yellow Sea (TANIOKA, 1968). The majority
of high salinity water is transported toward
the northeast and gradually  becomes confined
to the eastern margin of* the Japan Sea near
Sado Island. Before reaching Sado Island there
are several features analogous to meanders
along the frontal zone, which are demarcated
by southward protrusions of lower salinity water.
Each area of lower salinity water coincides with
an area of elevated bottom topography. Con-
versely, northward extensions of higher salinity
water occur over basins or troughs. However,
this relationship is not consistent from year to
year.

A northward extension of high salinity water
off Korea is also evident at this time (Fig. 5,
profile 3; Fig. 6) and appears to reflect the
characteristics attributed to the East Korean
Warm Current by TANIOKA (1968) and HAN
and GONG (1970). In this case too, the position
of the northern portion of the high salinity layer
is coincident. with: a topographic depression.
Unfortunately, the available station control is
not adequate for defining the precise behavior
of the high salinity layer in this area.

Fig. 7. Areal distribution of salinity at the level of maximum salinity in
the near-surface layer for February-March of 1969, 1973, 1975 and 1978.
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Another interesting aspect of the northward
extension of high salinity water off Korea is
that there is a progressive development in July
and August for the period 1974-1976 (Fig. 6).
This phenomenon may be fortuitous because the
isohalines at the level of maximum salinity do
not portray similar features during the remaining
8 years that were studied. The initial develop-
ment of this pattern is evident during February

and March of 1973, 1975 and 1978 (Fig. 7).
The vertical position of the maximum salinity
layer in the water column during July-August
(Fig. 8) also exhibits considerable variability on
a yearly basis. The depth to the core of the
layer is generally in the range of 100-150 m in
Tsushima Strait and along the southern margin
of the Japan Sea. Typically the depth to the
core decreases toward the north and northwest

4 JULY 9-AUG.5,1977 |, = 39|
34

")
“eedouLy 27-au6.19, 1969

F Grsonilns
ﬁﬁ JULY 8-29,

DEPTH (M)
TO CORE OF
TSUSHIMA CURRENT

Fig. 8. Areal distribution of depth to the maximum salinity layer of
the Tsushimia Current during July-August, 1968-1978.



Temperature and Salinity Changes in the Tsushima Current 207

but the contours do not exhibit a uniform
gradient. Instead, the seaward margin of the
high salinity core is characterized by an undu-
lating pattern.

It is difficult to ascertain the mechanism(s)
responsible for the vertical displacement of the
core layer owing to the lack of extensive short
time-frame serial observations. However, it
appears reasonable to deduce that this pulsating
type of pattern is related to the previously
described interaction of northern low salinity
water and southern high salinity water along
the frontal zone. Penetration of either water
type into the other would result in the observed
areal patterns of the maximum salinity layer
and the surface to core depth of that layer.
Although certain features, such as the north-
westward extension of the high salinity core
from the area around 36°N and 135°E, are
recognizable in the illustrations for several years,
the overall distribution of contours depicts a
situation that is in a state of flux. Thus, it is
tempting to speculate that there is a triggering
mechanism responsible for the behavior of the
Tsushima Current in the Japan Sea. Perhaps
additional work on the magnitude and temporal
aspects of the high salinity water entering
Tsushima Strait would elucidate this situation.

4. Conclusions

Water entering the Japan Sea through Tsu-
shima Strait is modified by variations in flow
from the Kuroshio Current and the Yellow Sea.
Some low salinity surface water from the Yellow
Sea is transported around Korea and is entrained
in the flow through the shallow Tsushima
Strait. When this occurs, water with the highest
salinity and temperature is present in the eastern
channel of the strait. For instance, this situa-
tion is particularly evident during October, 1969
and July-August, 1972, 1975 and 1977. During
the same season in other years, the flow of
high salinity water from the Kuroshio Current
is predominant and water with the highest
salinity flows through the western channel (e.g.,
July-August, 1974). This suggests that the
position of the Kuroshio Current southwest of
Kyushu may be responsible for variations in the
flow of high salinity water through Tsushima

Strait, which ultimately influences the behavior
of the Tsushima Current in the Japan Sea.
These fluctuations may be associated with the
meanders in the Kuroshio described by UbA
(1965), MUROMTSEV (1970), SOLOMON (1978),
MATSUKAWA (1979) and KONAGA et al. (1980).
Furthermore, it seems evident that the position
of the frontal zone and the characteristics of high
salinity water from the south mixing with low
salinity water from the north are influenced by
the volume and strength of Kuroshio water
transported through Tsushima Strait. This
complex and variable situation, in conjunction
with a secondary topographic influence, contri-
butes to a frontal zone in the Japan Sea that
is characterized by meanders which tend to
produce near-surface eddies with predominantly
high salinity water. On occasion, these eddies
become detached along the frontal zone and
result in clearly defined structures in section
and areal plots of salinity versus temperature
and geographic position. Subsequent transport
of high salinity rings northward from the frontal
zone is also evident. However, a precise charac-
terization of the developmental stages and fate of
individual rings in the Japan Sea is not possible
from hydrographic cruises with long sampling
Presumably, oceanographic cruises,
primarily in the frontal zone, with a much
shorter sampling interval would contribute to a
more precise delineation of the processes out-
lined. Ideally this approach would be supported
by an analysis of oceanographic information
obtained from the area southwest of Kyushu
and by satellite information from the entire
region.

intervals.
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Introduction

Satellite Observations and the Annual Cycle
of Surface Circulation in the Yellow Sea,
East China Sea and Korea Strait*

Oscar K. Hup**

Abstract: Winter monsoon winds of northeast Asia force major changes in surface circula-
tion, induce strong negative oceanic heat fluxes, and drive vertical mixing that differentiates
surface temperatures along the boundaries of major water masses. The oceanic thermal
fronts thus formed and their changing patterns are readily detectable by satellite through
the cloud-free polar continental air of the winter monsoon winds. The annual cycle of sur-
face circulation is synthesized from recent satellite observations, meteorological climatology,
and a review of oceanographic and atmospheric processes. The Kuroshio is observed to be
a strongly modulated source of warm Tsushima Current waters with a pronounced annual
cycle. The Yellow Sea appears to act as a buffer, at times receiving waters that would
otherwise flow through the Korea Strait and at other times supplying water to the strait.

Korea Strait and adjacent seas.

This paper is

The monsoon regime that prevails over the
Yellow Sea, East China Sea, and Korea Strait
provides a fundamental rhythm to regional
oceanographic processes (KIKUCHI, 1959; YT,
1966; KHARCHENKO, 1868; GONG, 1971). In
particular, winter outbreaks of polar continental
air over the region are the most severe in the
world (PALMEN and NEWTON, 1969). High
levels of runoff and strong air-sea interactions
generate extensive oceanic frontgenesis, which
is readily detectable in data from satellite-borne
scanning radiometers.  Atmospheric forcing
occurs in two modes: in winter by cooling and
destratification due to strong cold and dry
northerly winds, and in summer by extensive
precipitation, river runoff, and solar heating,
which produce a well-stratified water column
with a warm, low-salinity surface layer. Under-
standing the sources of surface water and their
seasonal variability is critical to understanding
the changing oceanographic conditions in the

* Received February 5, 1982
Revised October, 28 1982
Presented at the First JECSS Workshop, June
1981 (cf. La mer 20: 37-40, 1982).

** Coastal Studies Institute, Louisiana State Univer-
sity, Baton Rouge, Louisiana 70803, U.S.A.

a preliminary synthesis of newly acquired satel-
lite data with classical oceanographic data into
a proposed conceptual model of the annual cycle
of surface circulation.

The satellite data used in this study are from
the high-resolution format (1.1km) imagery
from the Advanced Very High Resolution
Scanning Radiometer (AVHRR) of TIROS-N/
NOAA-series satellites. Only a few representa-
tive samples from a large, multi-year file have
been presented. The channel 4 data (10.5-
11.5 p¢m) of this sensor were calibrated from
sensor voltages to temperatures in degrees
Celsius with a resolution of 0.25°C using a
program developed by DIROSA and HUH (1980).
The repeat interval of the data acquisition is
12 hours or less per satellite in orbit. Each
image was individually enhanced by computer
processing and photographed off the cathode
ray tube display. These high-quality data are
available through the U.S. National Climatic
Center, or directly from satellites to any suitably
equipped telemetry site for use by all nations.

2. The Environmental Setting
Regional bathymetry and topography are im-
portant influences on oceanographic response to
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atmospheric and oceanic forcing. The Yellow
Sea and Gulf of Pohai (Fig. 1) form a broad,
semi-enclosed sea with maximum depths of 60-
80m in the central and southeastern parts
(FAIRBRIDGE, 1966). The East China Sea con-
sists of a broad extension of this shelf with the
1000-2700 m-deep Okinawa trough along its
eastern margin (Fig. 1). The Korea Strait is
a shallow channel connecting the East China
Sea-Yellow Sea shelf to the adjacent abyssal
depths of the Sea of Japan. The geography of
the shelf break is important to both the behavior
of the Kuroshio and the effects of winter-season
regional cooling. The Kuroshio flows northeast
along the shoaling Okinawa trough, exiting the
East China Sea between the northernmost
Ryukyu Islands and Kyushu just south of where
the trough merges with the shelf (Fig. 1). The
Tsushima Current extends northward from the
western edge of the Kuroshio, flowing onto the
continental shelf west of Kyushu and through
the Korea Strait. Winter cooling of the shelf
waters may also be expected to depend on water
depth (HUH et al., 1978; GARWOOD et al., 1981),
resulting in a differentiation of surface temper-

Fig. 1. Location chart, bathymetry of regional seas.

atures between shallow and deep waters.

The geomorphology of adjacent land masses
exerts an important influence on the atmo-
spheric forcing of oceanic processes. Northeast-
southwest-trending mountains of Korea and
China stall or steer the atmospheric frontal
systems that advance over the region. Shallow
frontal systems move eratically over this terrain,
while deeper systems move across it smoothly
(USAF, 1964). Runoff from the extensive
eastern watershed regions of China flows into
the Yellow Sea via such rivers as the Yellow,
Liao, White, and Yangtse, whereas Korea,
with its highest mountains on the east and
lowlands along the west, is drained westward
by the Yalu, Han, and Kum. Broad tidal
mudflats, high tide ranges, and strong tidal
currents are important features of the Yellow
Sea coastal regions.

The annual cycle of monsoon winds in this
region is driven by the thermal contrast between
the Eurasian continent and the Pacific Ocean.
The seasonal advance and retreat of the Pacific
Polar Front (Fig. 2), the boundary between
polar continental and tropical maritime air,
controls local meteorological conditions (USAF,
1964). In brief, the fall transition from summer
to wintir monsoons involves a shift from weak
and variable southerly winds to stronger, steadi-
er, northerly winds. The mean position of the
Pacific Polar Front migrates rapidly from near
40°N southward to 20-25°N latitudes. Behind
it, individual cold-front advances (monsoonal
surges), followed by outbreaks of cold, dry air,
are caused by migration of high-pressure systems
These fronts
are unstable, and mid-latitude cyclogenesis is

across the Eurasian continent.

frequent (Air Mass Transformation Experiment,
Japanese National Committee for GARP, 1977a,
b, 1978, 1979). Rainfall and river runoff di-
minish following the southerly migration of the
Pacific Polar Front. The cold-air outbreaks
cause intense, episodic, negative oceanic heat
At first they occur sporadically, then
more regularly as the transition to winter is
completed. Strong surges of cold-air outflow,
interspersed with weak offshore flow, occur
with a dominant period of 4.3-4.6 days
(MURAKAMI, 1979). They move southeastward

fluxes.
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Fig. 2. Seasonal migration of the primary atmospheric polar front/polar trough system.

(a) Summer to mid-winter seaward advance.

(Data from USAF, 1970)

with speeds in the range of 13-18msec™'.
Cold fronts mark the leading edge of each
monsoonal surge, but true warm fronts or re-
turn flow rarely accompanies these disturbances
{(HENRY and THOMPSON, 1978).

The winter monsoon season dissipates as the
Siberian high weakens: the Pacific Polar Front
migrates back northward (Fig. 2). Cold-air
outbreaks diminish in severity and frequency,
and local weather phenomena become prominent
(NESTOR, 1977). Thawing on highlands results
in a spring freshet in the coastal rivers. By
early summer a continental low-pressure system
has developed over the Asian land mass. The
Pacific Polar Front has migrated north to a
zone extending from Shanghai to southern Japan.
It is unstable and develops waves, which form
low-pressure systems. Steady rains develop by
mid-June. Winds are southerly, light and varia-
ble through the summer season and accompanied
by strong solar heating (USAF, 1970). In
August the Pacific Polar Front retreats north
onto the continent (Fig. 2), and the two-month
season of typhoon activity begins.

Fuctuations in transport of the Kuroshio,
Tsushima Current, and Yellow Sea Warm
Current system strongly influence oceanographic
conditions throughout the region. Maximum
transport of the Tsushima Current in the Korea

(b) Spring to summer landward retreat.

Strait occurs in summer and fall, with a minimum
in winter-spring (UDA, 1966; Y1, 1970; HIDAKA
and SUZUKI, 1950). Seasonal variability of the
Kuroshio upstream of the split with the Tsushima
is poorly known. WYRTKI (1961) presented
hydrographic evidence from upstream near Tai-
wan, indicating maximum surface flow in May
and minimum from November to January.
GUAN (1981) observed a seasonal cycle of
Kuroshio surface velocities using GEK data to
be maximum in spring (March-May) and mini-
mum in fall (November). Seasonal variations
in the flow of the Yellow Sea Warm Current
are not known because of lack of appropriate
data. Considerably more information is avail-
able on the Kuroshio in the Pacific south of
Japan. This has been recently reviewed by
BLAHA and REED (1982), who show a maxi-
mum flow of the Kuroshio exiting the East
China Sea in summer and a minimum in fall
and winter. Influx of these waters into the
Korea Strait and southeastern Yellow Sea
strongly influences hydrographic conditions in
these areas through lateral mixing (KHAR-
CHENKO, 1966; FAIRBRIDGE, 1968; GONG,
1970). Better information is clearly needed on
the seasonal and shorter period transport north-
west and north of the Kuroshio in the East

China Sea.
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3. The Annual Cycle of Surface Circulation

The surface circulation is strongly influenced
by three factors: (1) the monsoonal wind system,
(2) the “Kuroshio-Tsushima-Yellow Sea Warm
Current System,” and (3) the complex regional
geography (distribution of land masses, water
depths, and major rivers). The large expanses
of shallow water in this region, plus the semi-
closed Yellow Sea, are very responsive to atmo-
spheric forcing and the influence of runoff. In
the paragraphs below a hypothesis on an annual
surface circulation cycle is presented season by
season. It is illustrated with schematic diagrams
and infrared imagery from satellites.

A. Fall Season: September, October, and

November

The major regional processes of the fall season
are schematically summarized in Fig. 3. Episodic
heat fluxes from the warm surface of the Yellow
Sea to the polar continental air of winter mon-
soons generate cold sea temperatures in the
shallows. Convective and wind-driven vertical
mixing begins breakup of the surface layer and
destratification of the water column into pro-
gressively deeper parts of the region. The

Fig. 3. Schematic picture of the fall-seasonal
model of surface circulation.

(a)

(b)

Fig. 4. TIROS-N satellite thermal infrared
(10.5-11.5 gm) imagery. (a) Sea-surface radia-
tion temperature patterns of the Yellow Sea,
30 October 1979. Note warm (dark) region
south of the Shantung Peninsula. (b) Tempera-
ture patterns of the seas surrounding the
Korean Peninsula, 7 November 1979. Note
the cold (light-gray) waters flowing around the
peninsula.

shallow waters of the northern and eastern
Yellow Sea cool most rapidly, but a large region
of higher surface temperatures has been observed
to remain just south of the Shantung Peninsula
in the southwest each year (1979-81) (see Fig.
3 and satellite image in Fig. 4a).

The northerly monsoon winds of fall induce
surface drift to the south along the shallows
of the Yellow Sea. This seasonal flow along
the west coast of Korea is called here the West
Korean Coastal Current. Evidence for this
current includes historical ship drift data (U. S.
NAVAL OCEANOGRAPHIC OFFICE, 1964), sur-
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face temperature patterns from satellite data
(Fig. 4b and others not shown), and sea level
changes (Figs. 5 and 6). Setdown of daily mean
sea levels along the Korean west coast of up
to 0.5m is seen to occur each fall. This is an
order of magnitude more than can be accounted
for by barometric or steric effects and is in
phase with the northerly component of wind
stress. West Korean (Yellow Sea) coastal water,
freshened from summer runoff and chilled by
cold-air outbreaks of fall, is discharged south-
ward and eastward through the Cheju Strait
and Korea Strait into the Sea of Japan.
Setellite data show that the cold West Korean
Coastal Current converges with the Tsushima
Current waters in the vicinity of Cheju Strait
(Figs. 4b and 7). This water bypasses the
ambient estuarine and inshore waters of the
south coast as it flows eastward through the
Korea Strait. Along the convergence with the
Tsushima Current, it forms the strong temper-
ature, salinity, and density boundary known as
the South Korean Coastal Front (UDA and
OHIRA, 1958; GONG, 1970). This front is
strongest and most stable in fall and winter,
when temperature and salinity gradients coin-
LANDSAT imagery (MSS green band
and red band 5, 0.6-0.7 gm)

cide.
4, 0.5-0.6 ym,
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and color aerial photographs examined for fall
and winter have shown a streaming of turbid
waters around the peninsula from the west
coast past the south coast to Pohang on the
east coast. At Pohang the turbid coastal waters
have been observed by the author to stream
offshore into the Sea of Japan.

Physical properties of the Yellow and East
China Seas in fall most closely resemble thcse
of the summer, changing toward colder, more
saline, and less stratified conditions through
The East China Sea con-
Yellow Sea
surface waters, East China Sea shelf waters,
and the Kuroshio (KHARCHENKO, 1968). The
shelf waters are formed by mixing between the
Yellow Sea, Yangtse River, and Kuroshio waters
along the outer shelf. The South Korean
Coastal Waters, between the Korean south coast
and north wall of the Tsushima Current, were
reported by GONG (1971) to undergo a large
excursion in physical properties in fall. He

air-sea interactions.
tains three major water masses:

reported changes in salinity from over 33%c in
August to below 31.5% in October, returning
to over 32.5% in November. A low-salinity
belt of 32-33% waters occurs along the northern
edge of the Tsushima Current and in the South
Korean Coastal Waters (LiMm, 1576) but dis-
appears in winter. The Korea Strait has three

layers in the west channel: surface, intermediate,
and Sea of Japan waters with surface and inter-
mediate layers only in the east channel (LM
and CHANG, 1969; UbpA, 1934).

B. Winter Season: December, January and

February

The regional circulation of winter is sche-
matically summarized in Fig. 8. Vigorous con-
vective activity is induced in the regional seas
by the cold, dry, and strong northerly winds
(Upa, 1934). The warm region south of the
Shantung Peninsula detected by satellite in fall
has disappeared. The north and northwesterly
flow of Kuroshio surface waters is opposed by
the prevailing winds and seasonally developed
baroclinic structure of the region. Strong
northerly winds in winter create southward-
flowing coastal currents of cold, low-salinity,
high-turbidity waters along the China coast as
well as the west coast of Korea. Coastal sea
levels are at their annual minimum. Sea-surface
temperature patterns (Fig. 9) and numerical
model results (Y. YUAN, personal communica-
tion) indicate that on the China side the coastal
current appears to flow southward along the
coast, discharging seaward just north of Shang-
hai. Cold coastal water extends farther south
toward Taiwan, presumably the coastal current

Fig. 7. NOAA-6 satellite thermal infrared image of 17 November 1980 showing the
belt of cold (low-salinity) water around the Korean Peninsula. It is lowingifrom
the southwest coast through the Cheju and Korea straits into the Sea of Japan.
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Fig. 8. Schematic picture of the winter-seasonal
model of surface circulation.

noted by FAIRBRIDGE (1966) (Figs. 9 and 12).
On the Korean side, coastal flow terminates
abruptly at the strong thermal front just south
of the Huksan-Chedo Island group (west of
Mokpo), where it appears to flow westward,
possibly recirculating within the eastern Yellow
Sea (Fig. 9). The region surrounding this island
group is the locus of a semi-permanent cold-
water area detected by satellite during the fall,
winter, and spring seasons (see Figs. 4a, b, 7,
and 9).

A particularly strong winter monsoon winds
in 1963 forced a circulation involving a remark-
able northward flow of warm water in the east-
central Yellow Sea and an extreme southward
flow of cold water in the western Yellow and
East China Seas. This was observed and modeled
by ASAOKA and MORIYASU (1966) and reported
to be a strengthening of the natural circulation
of this region of semi-closed seas with a warm
influx on the southeast side (Yellow Sea Warm
Current).

Fig. 9. NOAA-6 satellite thermal infrared image of 27 February 1980 showing the northern
East China Sea and southern parts of the Yellow and Japan Seas. Surface temperature
patterns show oceanic fronts and seaward discharge of China coastal waters, West Korean
Coastal Current (light gray, cold temperatures), and a three-branched path of the Tsushima

Warm Current in the Sea of Japan.
waters toward the Ryukyu Islands.

Cloud streets stream southeastward from warm
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The NOAA-6 satellite infrared image of 27
February 1980 (Fig. 9) illustrates some of the
features commonly observed during this season.
Cold surface waters are detected in the shallow-
est areas, particularly along the west coast of
Korea and the east coast of China. A warmer
zone occurs through the deepest central region
of the Yellow Sea, an intrusion or remnant
of stored heat from the Yellow Sea Warm
Current. A seaward plume of cold waters ex-
tends from the coast north of Shanghai to the
east and southeast, a feature frequently detected
by satellite during winter and spring.

The Tsushima Warm Current waters near
Korea intrude landward along the south coast
(L1M, 1976). This landward flow of high-salinity
water, plus intense evaporation by dry winds,
creates the winter annual salinity maximum
observed in estuaries (CHANG, 1971) and in
coastal waters (GONG, 1971). It has been in-
ferred that in winter the dense South Korean
coastal waters sink along the bottom and that
warm Tsushima Current waters intrude as land-
ward compensation along this coast (L1M, 1976).
The strong thermal front between Cheju-do
and Tsushima Islands, formed by the discharge
of Yellow Sea water and its offshore conver-
gence with the Tsushima Current in fall, has
disappeared in winter. Plumes of cold water
extending seaward from the south coast estuaries
are commonly detected by satellite during this
season.

C. Spring Season: March, April, and May
The spring-season schematic of regional proc-
esses is presented in Fig. 10. The increased
atmospheric humidity, fog, and dust-storm activi-
ty create progressively poorer conditions for
making observations with satellite-borne sen-
sors. Figures 11 and 12, however, are good-
quality infrared images acquired in early spring,
illustrating the conditions inherited from winter.
Warmest waters are confined to the Kuroshio
core region, which, except for relatively minor
intrusions to the northwest, flow through the
Ryukyu Islands into the Pacific. Coldest waters
occur in the shallow regions roughly outlined
by the 100-m isobath (see Figs. 11 and 12 for
image and Fig. 1 for bathymetry). Waters of

Winds Diminishing
ond Variable

Fig. 10. Schematic picture of the spring-seasonal
model of surface circulation.

Fig. 11. NOAA-6 satellite thermal infrared
image of the northwest Pacific, East China
Sea, Korea Strait, and Sea of Japan. Water
masses shown include the Kuroshio, northeast
East China Sea waters, and cold waters of
the East China Sea shelf, Yellow Sea, and
Sea of Japan, 23 April 1981.

intermediate temperatures are observed seaward
of the 100-m isobath, outside the core of the
Kuroshio. These are a mixture of Kuroshio
and East China Sea shelf waters formed along
the shelf break, which is the major source of
the Tsushima Current (HuH, 1982). These
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Fig. 12. NOAA-5 satellite thermal infrared
image of the Sea of Japan, Yellow Sea, and
East China Sea, 8 April 1978.

waters are episodically intruded by plumes of
the Kuroshio just west of Kyushu (Fig. 11).
The Tsushima Current is at the lowest flow
stage of its annual cycle (HIDAKA and SUZUKI,
1950; Y1, 1970). Coastal sea levels through
the region, set down to lowest levels of the
annual cycle in late winter and early spring,
now begin a rapid rise, as relaxation of the
northerly wind stress, river discharges, and
seasonal solar warming progress.

In late spring the Yellow Sea warm current
sets up and begins to flow northwestward to-
ward the Gulf of Pohai (Upa, 1966).
port of the Tsushima Current increases (Y1,
1966, 1970). The belt of cold, turbid water of
the China Coastal Current still occurs around
the Shantung peninsula and along the China
coast (HUH, 1973).

The physical properties are initially similar
to those of late winter; waters are the coldest,
most saline, densest, and least stratified of the
annual cycle. Solar warming raises temperatures
most rapidly in May.
shallows as they receive runoff from spring
thaw in the highlands. Cold Yellow Sea bottom
water stagnates in the deeper areas, moving

Trans-

Salinities drop in the

south (UDA, 1934). Stratification develops from
the increased solar warming, freshwater runoff,
and renewed influx of Kuroshio waters north-
ward as transport by Tsushima and Yellow Sea
warm currents increases in spring.

D. Summer Season: June, July, and August

The summer-season regional processes are
schematically outlined in Fig. 13. After spring
thaw, river discharge all zalong the coastal
regions peaks for the second time from the
The Kuroshio, Tsu-

shima, and Yellow Sea warm currents distribute

summer monsoon rains.

relatively saline tropical waters throughout the
Low-salinity seawater,
generated in coastal regions all season, spread
seaward along the northwest edges of the
Kuroshio and Tsushima Currents. Along the
China Coast, a northward-flowing coastal current
The Yellow
Sea warm current flows northward from the
Kuroshio, westward past Cheju Island, into the
Yellow Sea. Water levels in the Yellow Sea
and northern FEast China Sea reach annual
maxima in the summer, presumably from a

regions in summer,

is set up by the summer winds.

combination of Yellow Sea warm current inflow,
- WiNDs souTHERLY
WEAK AND VARIABL

Fig. 13. Schematic picture of the summer-seasonal
model of surface circulation.



Satellite Observations and the Annual Cycle of Surface Circulation 219

solar warming, river discharge, and wind setup.

Solar heating and dilution by freshwater run-
off markedly alter physical properties of these
Yellow and East China Seas. Stratification
reaches a maximum as the deeper waters in
both basins retain the cold, higher salinity
conditions produced in winter. Strong thermo-
clines are established particularly in the Yellow
Sea and south coast regions off Korea. The
Korea Strait again has three layers in the west
channel — surface, intermediate, and Sea of
Japan waters — but surface and intermediate
layers only in the east channel (L1M and CHANG,
1969; UbA, 1934).

4, Discussion and Preliminary Conclusions

The regional sea-surface circulation, including
major currents, water masses and surface winds,
has been illustrated for the four seasons in
Figs. 3, 8, 10, and 13. The consequence of this
seasonal model of surface circulation on the
Korea Strait may now be considered in light
of these ideas. Figure 14 shows the annual
cycle of current velocity in the west channel of
the Korea Strait (YI, 1970; HIDAKA and
SUZUKI, 1950) calculated from dynamic height
and sea level tilt data. It also includes some
moored current meter measurements acquired
in October 1972 and the monthly climatological
rainfall figures for the west coast of Korea.
The Tsushima Current peaks during the period
August-November, later and over a longer
period than the known current velocity cycle
of the Kuroshio (TAFT, 1972; BLAHA and
REED, 1982). YI (1970) notes that the strong
late-summer/autumn part of the current cycle
has been stable from year to year, while great
year-to-year variations occur in the weaker
winter/spring part.

The hypothesis is proposed that the annual
flow of waters through the Tsushima Strait is
modulated as follows:

(a) The winter-season minimum is due to
retardation and resistance to the northward flow
of the Kuroshio waters by a possible combina-
tion of northerly winds, the seasonally developed
adverse baroclinic (KATO, 1959), and regional
sea level variation (TOBA et al., 1982).

(b) A steric, inverse barometer and wind
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Fig. 14. Monthly mean surface current, west
channel of the Korea Strait (from Y1, 1970).
The cross-hatched curve shows monthly mean
rainfall in inches along the west coast of Korea
(USAF, 1970). Direct measurements by current
meters plotted for October 1972 from three
depths in both channels of the strait.

stress setdown of the Yellow Sea surface occurs
in winter, producing a sea-surface slope that
rises to the south from the Gulf of Pohai to
the shelf edge of the East China Sea.

(¢) The spring-season relaxation of the winter
monsoon conditions results in a progressive north
and northwestward flow of Kuroshio/Tsushima
waters into the Yellow Sea as the seasonal
Yellow Sea warm current.

(d) The peak of flow through the Korea
Strait is initiated when Yellow Sea water levels
reach a mid-summer maximum, which represents
fillup of the basin, and a sea level slope that
opposes further influx of Yellow Sea warm
Note that the peak in rainfall along
the west (Yellow Sea) coast of Korea occurs
just prior to the sea level maximum (Fig. 5)

current,

and current flow maximum (Fig. 14).

(e) The Kuroshio/Tsushima Current waters
now (mid-summer) deflected from the Yellow
Sea flow wholly through the Korea Strait into
the Sea of Japan.

(f) The late-summer maximum of flow, once
reached, is augmented and sustained in the fall
by a supplementary current, the discharge of
eastern Yellow Sea waters around the perimeter
of the peninsula by the onset of winter mon-
soons,

The Kuroshio is thus apparently an annually
modulated source of tropical/subtropical waters
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throughout the region. It is suggested that the
Yellow Sea acts as a buffer, at times receiving
waters that would otherwise flow through the
Korea Strait and at other times discharging a
major contribution through the strait. Such
changes in source waters will very significantly
affect physical properties and circulation in the
Korea Strait and in the western Sea of Japan.
The synoptic perspective has also given clues
to a previously unrecognized role of the Yellow
Sea and intermittent northward branching of
the Kuroshio on regional surface circulation.
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Appendix
Some Limitations on the Oceanographic
Use of Satellite Infrared Data

Data from the infrared radiometers of NOAA
satellites provide a valuable, logical supplement
to conventional oceanographic measurements
(research vessel, ship of opportunity, ocean
buoy, etc.) by adding an essential spatial and
temporal extension of measurements, Rigorous
interpretation of these data is yet in its infancy,
but simple methods of water mass tracing,
identification of hydrodynamic features, plus use
of indirect corroborating data (water levels,
coastal observations, etc.) and models provide
for a solid beginning. It is only usable, how-
ever, when imagery is available in digital format,
so that it can be temperature calibrated, scaled,
mapped to standard projections, profiled, merged
with other data types, and subjected to various
statistical analyses (HUH ez al., 1978, 1981;
HALLIWELL and MOOERS, 1979; HUH and
DiRosa, 1981).

There are certain inherent deficiencies in the
use of satellite infrared radiometric data for

oceanography. Principal ones are skin depth
(only 0.1mm) penetration into the sea, loss of
temperature gradients in data under high levels
of warm atmospheric water vapor (HSU et al.,
1978), frequent interruption of time series data
by cloud cover, and only indirect ties of temper-
ature patterns to ocean dynamics. Winter
monsoon conditions minimize these problems,
however, deeply mixing surface waters, hori-
zontally differentiating water masses according
to heat content, and creating frequent clear-sky
conditions that yield high-quality data. Absolute
values of satellite-measured sea-surface temper-
atures are lower than in situ measurements
because of atmospheric attenuation, formation
of a cold skin, and near-surface temperature
gradients. Water vapor and other triatomic
molecules attenuate the infrared radiation from
the sea surface. Under low wind speeds a thin,
cold surface layer forms, emitting infrared energy
at an intensity lower than that of the bulk sur-
face water temperature measured from bucket
samples at least a few centimeters below the
sea surface. Near-surface temperature gradients
result in bucket or ship injection temperatures
that are warmer or colder than the ‘‘skin”’
temperature measured by satellites. Ship, buoy,
and satellite data obtained over the last five
years from the Gulf of Mexico, Norwegian Sea,
and Korea Strait have shown that under cold,
dry conditions, when the atmosphere contains
lcm or less of total precipitable water, satellite
measurements (10-12 pgm infrared band) have an
offset of approximately —2°C from surface
measurements. During summer monsoons two
conditions render this approach wuseless: (1)
formation of nearly isothermal sun-warmed sea
surface layer and (2) introduction of high levels
of warm atmospheric moisture (clouds and clear-
sky water vapor), which reduce atmospheric
Winter
monsoons make this one of the best regions in
the world for oceanographic use of satellite in-
frared data.

Although these seas are among the most
extensively sampled in the world, many problems
remain owing to the inherent limitations of the
sampling methods previously available. For
each fall-winter-spring-season cruise, all clear-

transmittance of sea-surface radiation.
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sky satellite imagery should be accessed and
used in the analysis and interpretation of costly
ship data. In this manner oceanographic proc-
esses of much practical importance such as
upwelling, mesoscale eddies, and frontal move-
ments will not be missed or incorrectly identified.
The significant year-to-year variability of the
oceanic conditions in this region promises a
continuing challenge in studies of mesoscale
processes.
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A Note on Sea-Level Variations at and

around Shirahama Oceanographic Tower*

Shigehisa NAKAMURA**, Hiroshi YOSHIOKA** and Shigeatsu SERIZAWA™*

Abstract: Sea-level variations at and around Shirahama, the western coast of Kii Peninsula,
were studied using the observed data and some old documents. First of all, tsunamis, storm

surges, swells and wind waves were analyzed as a problem on statistics of extreme values.
Secondly, sea-level variations with a period of about 40min were discussed in relation to
seiches in Tanabe Bay and oscillations on the shelf connected to the bay. Lastly, a possibility
was shown of sea-level variations on the coast induced by an effect of offshore currents.

1. # F

O RETEE, HIDSNIC S 5 HEw B
AL & LTeABR KAy, BRI 7R X
Horre, BB X 5EE, EEME X HE
¥, BLoBEC LS5k CREB, HHRCHEM
REZENELZDNS, ZOROKNMERNTIL,
BRI BHETCTI /Wb DL 55,

IHECOEBRE AR LS B3t o S
1, ABILC () & - o PRI, (b) 5&EE
DEREDOTH, (o) MBI BT 5HMEKEE GE
WEBOFHD, (D) FAGKE O wEKEH (RIEE
HoTHED, 2L T (o) ARIEDHERE (EEs
FEOTHD) Thb, ZhbOBREHC L THEL
DFFERBENREINT D (P& 2iE, HEKA
B SRR ET30 S A S ),

T, Eldieh, (D EE - BERLO
BRCBEELC, EREFEENE R Xz o F

* 19824F 3 H10H %3 Received March 10, 1982
E U AR RS SR R AT v S AT
T649-23 A0k LIIR 75 22 FAT ) ST BX SIS
Shirahama Oceanographic Observatory, Disaster
Prevention Research Institute, Kyoto University,
Katada-Hatasaki, Shirahama, Wakayama, 649-23
Japan

MR TOKMER T LD ST, L lERBROK
TR BIE LR E LT BE ORI A I
b dhEbbie, @) BETTHOREI SR
B LD S TeKNEET, HABEDOHERD D
WIS DTN HE Mo Ay — L E L bR S
KETEB A L D2, ZhORSEILLRME
EE L oL TR T 5, (3 &b, ffkE
JRAKROEE = 7 X » T ATEART X
BIREAMIEE O F B R T,

IR Vi 2R BV L TR 355E 3K A — R (4R
REFH) OWIBIC Y » TERE IR, ZhiC
&5 CEAL EEFEBRSRHE O oD KE
BN, BV T A =TIV F 4 =IO
KEVEEO WIS A R¥E L, 2, #F
DEEATOBAOLEEA TR L T v oK
1, ThEBST, brERTOEFERE YR
B O(NFLE) WEETAZ LT L, £DH 20
BERIEARBLEBRE, BHEOEBLHIALD
LA, ABROBRBIEOD D FXHET5 L
HAETY, Hbilcd CHRAIERIC BT 5H#E
HOBFECHONTED LD TR LERDH D L
BLbhb,



224 La mer 20, 1982

2. BEEBXGABRAIOCEREHBEGE
BRI R L ERER, M LERAERCS
v, Fig. 1 @& 5 k5 K HEEBOEONITICLE
LTw5%, HABNOBBEMEGETHD, &
BOALED D, BOEECHWT, BEiffcol
Mo T b, BRIEIKERN 5 m (FERFEREKS00
m) KEEBINTW5, HIEROKELESO
EENT, SNEKEBRKEOEMC X VERESR
e7rV FOBER LSS THETHEDTHS
2, iy, BB IsglltiieTEbz
bhicdothsn (HE S, 1971), coze vt
DE T LS e 5 KIREEL, FELERORRSE
e B EE 5T TW5 X Ths (FHHb,
1977), 702, FHc A b5 A 14 B o&EH
BoKREEL, REROKMESLES X<
LT (FM, 1981,

3. KEEEBOREITRIE

EHE A TR BN BKMEENCIL, WALAD
BEiobonEgzbh, ik, TORRFCE,
HNHDEDONEZBRE, 2T, K&
LT, (D &3, (2) Sl L cmimas
BILOEREE, 3) 5hb LR, ) HRe
PFENRE A E 2 5,

MINABE
TANABE
TOWER | BAY
e
33°40°N
PACIFIC
OCEAN
0 5 KM
SCALE

135°20'E

Fig. 1. Coastline and geography around
Shirahama Oceanographic Tower.
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Fig. 3. Annual highest tide level and tidal anomaly at Shirahama. (A) Annual
highest tide level Y (cm above T.P. +84.8cm) during 1966-1980. (B) Annual
maximum of tidal anomaly Yp (cm) during 1974-1980.
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Fig. 4. Annual variations of monthly maximum
of Hmaz (m) at Shirahama Oceanographic Tower
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Observed tide levels at Shirahama and Kushimoto on 7 November 1980.
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Fig. 7. Monthly occurrence of sea-level variations
with a period of about 40 min at Shirahama
(1980).
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Evolution of Kuroshio at the south of Shionomisaki.
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Growth of Tombolo at an Upheaved Island*

Masahiro HASHIMA** and Yutaka MIZOGUCHI***

Abstract: This work is concerned with the growth of a tombolo at the upheaved beach of
a volcanic island Iwo-Jima. When we observe an air photograph of the tombolo, many
streaked patterns are visible. The size distribution of sand grains at this tombolo was
measured. The median size of sand grains varies with distance along the tombolo, and is
related with the streaked pattern. It is shown that the tombolo has grown annually with an
exponential curve. The source of sand supply of this tombolo is determined in relation to

the upheaved values of the mainland.
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Fig. 1. Variation of the shoreline of Iwo-Jima.
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Onset of Edge Waves by Small Scale Atmospheric
Pressure Fluctuation®

Masahide TOMINAGA**

Abstract: Generation of edge waves with period from several minutes to about one hour
by an atmospheric pressure fluctuation triggered by a mesoscale convective cell is considered
theoretically. The cell and the forced waves advance with the same constant velocity U, since
the mathematical procedure resembles that of generation of ship waves. The waves are
represented by the so-called Airy’s phase, and their maximum amplitude quantitatively agrees
with the actual observations. Energy considerations are also given, and the behavior of waves
advancing from a region to another with different bottom slope is considered. Detailed

analyses of the atmospheric elements are left in future.

1. Introduction

Recently, edge wave phenomena play an im-
portant role not only in the field of oceano-
graphy but in the practical coastal engineering
problems such as cusp formation along the coast,
bottom morphologies and nearshore sand drift.
To manage these coastal problems and to pre-
dict the edge wave generation, we must seek
the clue to the mechanism of it. In this con-
nection, many authors have published papers on
the edge waves already.

Close relations of edge waves and beach cusps
were discussed by GUZA and INMAN (1975) who
have concluded that incident waves in the near-
shore sea interact with edge waves giving rise
to amplification of the edge waves with twice
the period of the incident waves. The detailed
manipulation of this mechanism was studied
theoretically by GUZA and DAvis (1974) pro-
posing the weak resonant interaction between
the incident waves and the edge waves, using
a perturbation method. Another version of
mechanism relating the incident waves and edge
waves interaction was given by GALLAGHER
(1971) who concluded theoretically the nonlinear
interaction between the edge waves and the

* Received April 17, 1982

** Japan Meteorological Association, Kanda-Nishiki-
cho 2-9-2, Chiyoda-ku, Tokyo, 101 Japan;
Faculty of Engineering, Kagoshima University,
Kagoshima, 890 Japan

Defining the frequencies a1, 09
and wave numbers k;, k2 of incident waves and
the existing edge waves respectively, the optimal
excited frequency and wave number of the latter
are given by

incident waves.

0=01— 02, k:kl—kz,

where ¢ and k are connected by a dispersion
relation

o?=gk(2n+1)a,

o and n being the bottom slope angle and mode
Without this resonant
conditions, forced mechanism such as by atmos-
pheric disturbance may arise as a trigger action
of the onset of the edge waves.

number, respectively.

Generally, meteorological forcing systems are
classified in two; pressure fluctuation and wind
stress exerted on the sea surface as GILL and
SCHUMANN (1974) mentioned. They insist that
lcm elevation of the sea surface corresponds
not always to the 1mb fluctuation of the air
pressure in shallow water near the coast. How-
ever, ADAMS and BUCHWALD (1969) describe
“wind stress is the principal driving mechanism
of edge wave generation’’. According to them,
good correlation between observed sea level and
pressure change is nothing but that between the
wind stress and the pressure change.

GREENSPAN (1956) is the first to try theo-
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retically the mechanism of edge wave generation
by cyclone passing off the coast. The pressure
model used by him is

Plx,y,t)=Po exp{-— (z=Ut)’+(y—yo)* },

L2

where P, is maximum pressure change, L the
characteristic horizontal scale of the cyclone,
the x-y axes are taken along and perpendicular
to the coast respectively, U the constant velocity
of the moving cyclone and 7, is the distance
from the coast to the center of the cyclone.
The maximum wave height occurs when L=
122 km and 7o=54 km, however, the horizontal
scale L is much larger than this value for a
common cyclone. This fact implies the ampli-
tude of edge waves is very small when L is the
scale of ordinary cyclone, because a formula
giving the elevation of short period edge waves
or with moderate k, the wave number is multi-
plied by a very small factor ¢ *£. For very
long waves with small %, the factor is not
small, but the Coriolis acceleration must be
taken into consideration.

In the present paper, to seek the clue to edge
wave generation of comparatively short period,
the author would like to propose tentatively a
mechanism of their generation by an atmos-
pheric pressure fluctuation of scale smaller than
mesoscale (say, horizontal scale of several ten
kilometers) arising in connection with unstable
air layer, such as cold wind blows over the
However, analyses of the
atmospheric convection virtually are not carried
on in this paper and will be left in future.

warm sea surface.

2. Fundamental equations

The right-hand coordinate system is chosen
so that the x-axis and y-axis are taken along
and perpendicular to the coast respectively,
z-axis taken upwards. On the assumption of
inviscid, linear and irrotational motion, the
fundamental shallow water equations of the
motion and continuity are given by

Pz

wtgle=—5, )
¢ gf; 0 {

2.1
’Ut+gCy:_—iy, 1 @1

Lot hus+ (o), =0, )

where u# and v are the components of velocity
along and perpendicular to the coast due to the
wave motion respectively, ¢ is the time, { the
elevation of the water surface from the still
water level, 4 (assuming the function of ¥ only)
the depth, p the atmospheric pressure fluctuation
by which the water surface is subjected, p the
density of water, and ¢ the acceleration of
gravity. Suffices denote partial differentiation
with respect to independent variables.

To solve (2.1) we use the combined Laplace
and Fourier transform and its inverse transform
such as

Fk, vy, s)=S e“”‘dxg e F(x,y,t)dt (2.2)
— 00 0
and
1 (e 2 —
F<x’y’t):_47r—2iy e’“””dkg ~e"Flk,y, s)ds,
2.3)

where F(x,y,#) is arbitrary physical quantity,
F(k,y,s) is its combined Laplace (concerning
with time) and Fourier (concerning with space)
transform.

Horizontal scale of a meteorological disturbance
such as generated by a mesoscale convection is
assumed to be several kilometers and width is
the same order with that of a shelf in Japan.
Therefore, it is permissible to assume the dis-
turbance extends infinitely with equal width to
the offing i.e. positive y direction, then p is a
function of x only giving

pol?

i &
where characteristic scale L is the half pressure
length along z-axis. The adoption of the form
(2.4) makes the computation of Fourier trans-
form tractable. In (2.2) F(x,y,¢) is replaced by
p(x) giving

o eikz
po=pl?|

—o0 L2+.2?2

dxgue_” di= mLpo e e
s

0
(2.5)

The mathematical procedure which we want
to proceed is similar to that of a ship wave
problem. The pressure fluctuation exerted on
the surface of the sea has an impulsive character,
namely
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pol?
L2+ 2

p= H({),

where H(¢) is a step function defined by

1 =0

H(t):{o t<0.

Let us assume the pressure disturbance proceeds
with constant velocity U along the x-axis. This
disturbance continuously gives rise to waves
advancing with the same speed U. The elevation
of water surface due to the wave motion on
some point behind the disturbance is the sum of
the elevations over time interval during which
the fluctuation passed from the point considered
to the present position.

Now performing the Laplace-Fourier trans-
forms to the equations (2.1) giving

—sa+ikgl= —fz—&ﬁ , )
’ \
—so+gly=— i—y ‘) (2.6)

—sC+ikhii+h,5+ho,=0. )
Elimination of # and o from these equations yields

— 2 — ?)
o+ b—(ey+= ) e=—E8, )

where we assume h=ay, and Q(y) is defined
as follows:

QW) =ypuw+pv+kyp. (2.8)
Let us introduce new variables such that
{=e¢2z, E=2ky,

then (2.7) reduces to

d?z 1 s
e -0 -5 (M)
00,

- e’ e,
09

2.9)

The solution to the homogeneous equation of
(2.9) is given by the Laguerre’s function of
n-th order L,(£)*,

1 <1+ s? )
il =—n
2 gka
* La(x) is the solution of the equation zy’/+(1—x)y’

+ny=0, n: positive integer. Lolx)=1, Li(x)=
1—z, Lix)=1—2z+2%/2, ....

when we put

n being the positive integer including 0. L&)
is given by

n nlé

=0 =) (P (2.10)

Favoured by the orthogonality character of the
Laguerre’s function, namely

S: La®) Ln(®) dE =,

where 0mn is the Kronecker’s symbol, we can
expand the both members of the equation (2.9)
such that

s2

B a(ne e o )Ln@

=—— 2 B.L, B
09 n=0 ©)
or
1 s? B,
An<n+ 2 +—=— 2gak > —‘p'g_, (2.11)
and
B=\"e 0@ L@ as. @12
The n-th mode solution to (2.9) is
=20, = AnLn(€)
or using (2.11) and (2.12) we get
i} —¢/2 Li(€ o i
Gom = | e L.
09 nt=+ 0
2 2¢gak 2.13)

Using (2.5) and (2.8) with §=2ky we obtain

TpoL§ e~ kiL

Q&)=~— 15

(2.14)

Now, we are confined in the case of the
fundamental mode n=0, hence from (2.13) w

get
— 'k (y+L> oo
t=22 L‘“S—S geé/rdt
o9 23(l+ ) 0
gak

2npy  Le WD)

JPQ ——<l+—a;-)— (2.15)
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The inverse transform (2.3) is applied to ; yields

co=—l—-gm e‘”‘”d’cﬁm et Lods

4r% —oc0 —joo
_ ioL Sm o~ tka—{k{Cy+L)
0F ) —oo

X (et VIR - g1 VIRELY Jle | (2.16)

where the integration along the imaginary axis
of the s-plane is carried on as

g Ll et ds
—ioo S(L+5%/gak)

/

—=p (gl vIa Rt | gt yaaTeLy
2

Leaving the oscillating term only, and after
some manipulation, retaining only the waves
advancing to the positive x direction, we obtain

__bL 7rgazf‘">“2 [_ gat?
Co= 4pg< =y exp| — (y+L)

« [( gat® 7:) *
ex 1 —_——
P 4z 4]t
As already mentioned above, if the pressure
disturbance moves with constant velocity U to
the positive x direction, the elevation (or descent)

of water surface behind the disturbance is ex-
pressed by

2.17)

2= L\ ¢ 2.18
= — z .
f=L jo e, (2.18)
where ¢ is large, and we multiply ¢/U so as to
%, has dimension of length.
For convenience we introduce functions Yr(¢)

and f{(z) like

_ b rgat )”2 [_ goit? J
W =—£2 (250 ) exp) — 424D,
_gu T
)= Az 4°
(2.19)

Then, (2.18) reduces to
5 g (*

Co=—s Y(2)et ' dt (2.20)
UJo

where T is large.

* Detailed derivation of (2.17) appears in Appendix A.

3. Evaluation of the integral
We are now concerned with the evalution of
the integral

T

I:S Y2t/ dt . 8.1)
0

If T is large, f(¢) is also large near T, therefore

the integrand in (3.1) oscillates rapidly resulting

vanishing effect exept at a stationary point #o

given by
’ —ﬂ(z¢0_Ut02>: =
Fa=2 (22 -=)=0, =0,
therefore
22
0— U )
and
o i
fe)=F == 3.2)

The second and third derivatives of f(¢) at z, are

3gall
g=f"t)= o, r=f)= =05 (33)

Now, Taylor’s expansion f(¢) near £ gives
_ q9 2
SO=fw)+ 57 E—10)
r
4 (=t +.... . (3.4)

Then, if () is a gentle function of ¢ we have:

T
I=r(to)et /0 lim j exp z'[%(t—to)2

T—o0J()

+—g-(t——to)3+. .. .]dt . (3.5)

Let us denote the ratio of the second term.
to the first in the bracket of this integrand by
€ so as the factor £—¢o to disappear:

e= —%I— (t—to)f“/[% (t—to)2:|3/2

V2
= B_IqIL%' (3.6)

Hence, the integral in (3.5) reduces to
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%

_\/ S - gtla2+eds) do- (37)
lq] A

,,_\/ 2l gy

If ¢ is small,’ that is to say, using (3.3)

e=—2Y <1, @8

(gax)1/2

where

we can ignore the second term e¢® to ¢% in
3.7 resulting

' J \/ g =02/t dO' 2;[ \/ZTeni/4'
lgl J—co gl lql h

Then, ‘we obtain. from (3.5) the well-known
expression i

1~y é’?«pﬁm) exp| s+ 2] ®9)

If & is not so small, we have from (3.7)

J \/ S ez(aZ+sa3) Jo
lql , :

:27r( i‘l > Al[ (3g)~4/3] exp( zéql‘"’)

(3.10)
where the Airy’s function is defined by

X (3 )1/3 [
Al[— (3;1/3]: ‘; SO cos (at®—z7) dr .

Therefore, when ¢ is not so small we have

173
I~27‘(‘ | > Yr(tg)et/(to> g2i/27e2

X Ai[ —(3e)~¥3] . (3.11)
4. Waves of the fundamental mode

From (2.20), the edge waves of the funda-
mental mode (n=0) is given by Zy=¢gI/U. To
evaluate o, Yr(zo) must be decided. Introducing
to=2x/U into (2.19) we get

ol zga 1/2
2ng( x ) ‘eXp U2 y+L)]

4.1)

Y(to)=

* See Appendix B. In version of ¢, we have
exp(ilg|?/3r®) =2/ %7 - ‘

and using (3.2) and (3.3) we have _
70—(—';[‘> Ylte) 1 ‘

(@)

2  gax 1\ = T
St =T <l+54>—4“"“ e
4.2)

where we use k=ga/U? (wave number), and
ignore 1/54 against 1. Finally, taking real part
we obtain from (2.20) and (2.21)

Reio~_<—4—) m L L kLo Ly
3 ogo

cenfse-5) - woreal ()]

P ,
=—NAe"W(kx)”5A1[ (l:;g)“_—_l ,

T \* :
Xcos(kx—z> s (4.3)
where

4 1/3
N={Z) =2
(5) -

_ P o wr_ DL <_ gaL)
A-—pgakLe _—pU?e o)

and the argument of the Airy’s functlon in
(3.11) is manipulated as I :

(3)- 43— (\_/@)4/3:( gax )2/3:(ﬂ* 2/3,.«
6U 36U? 36
The waves represented by (4.3) are called
Airy’s phase. As shown in Fig. 1, the Airy’s

]
\ L g 1287 \“\'Lu

Fig. 1. Airy’s phase computed from (4.3).
The number attached to P is the zero point
of Airy’s function in kz.

* In Co, the time factor e % is understood.
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function oscillates slowly comprising the edge
waves of wave number k into its envelope.
However, if kx is so large that we can use the
asymptotic formula of the Airy’s function (B.5)
in the Appendix, yielding

27[;’0
pga

z\ . (kx =
Xcos(kx—z) sin <a +Z> (4.4)

Re Zo’“" kLe k@+L

Invoking now the magnitude of € given by

(3.8)

22U 2
8% Voax  vkz '

when kx is large, € is so small that we can use
(3.9) rather than (3.11). Therefore, the phase
given by (4.3) does not continue long rather is
followed by a simple stationary one with con-
stant amplitude: using (4.1) and (4.2)

TPo

. kLe * v+ cos kzx, (4.5)

Re Lo~—

where the term 2/27¢*=kx/54 was ignored
against kx.

Figure 1 represents the Airy’s phase with
beating-like wave packet between O and P where
¢ is larger than 0.2, especially immediately be-
hind the pressure disturbance, ¢ is larger than
0.3. After this phase between P and Q termi-
nates, the waves represented by the asymptotic
formula (4.5) arises, namely, soon may transfer
to stationary waves represented by the formula
{4.5) (¢ decreases).

‘5%16h 1?3 20 22 18d/0h 2

1

!

ﬂ ) i
B
!

i

Fig. 2. Tidal record at Makurazaki
(18-19 November 1979).

Due to paucity of actual observations of edge
waves which might arise by an atmospheric
pressure disturbance, it is not easy to find vir-
tually the peculiarity of motion above mentioned,
namely, the evidence of the Airy’s phase by
observation. However, if we cast a glance at
Fig. 2 the tidal record at Makurazaki, Kagoshima
Prefecture, Japan during 18-19 November 1979,
the feature of the Airy’s phase may be detected
from the record between A and B. If we sur-
mise that a pronounced fluctuation of pressure
exerted on the surface at time indicating by the
point A, the large amplitudes assemble near A
and after B the waves of small constant ampli-
tude continue.

Observations of edge waves carried on at
Makurazaki give the spectral peak at about 13
minutes of the period (6==8.06x107%sec™!) and
the sea bottom inclination is about 0.02. Hence,
from o=kU=¢ga/U we get U=24.3m/s (87
km/h), the phase velocity of waves and it must
be equal to the migrating velocity of the pres-
sure fluctuation. This value of U computed
from the frequency of edge waves is reasonable,
since the meteorological disturbances run with

+1

10
SPECTRUM
104
10
10°
200 100 40 20 10 4 2 T min
SEA LEVEL
MAKURAZAKI  30-31 MARCH 1979

Fig. 3. Power spectrum of long waves recorded
at Makurazaki (18-19 November 1979).
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Table 1. Theoretical value of ¢ versus = or %,
the time elapsed since the pressure fluctuation
passed at the station.

z (km) t (hours) ¢
50 0.55 0.491
100 1.1 0. 347
200 2.2 0. 246
300 3.3 . 0. 200
400 4.4 0.174
500 5.5 0.155
1000 11.0 0.110

the speed of 60-90 km/h or more.
number k is given by

The wave

k:fg;o_: =0.33km™! (wave length, 2=18.9km),
then,
2 109.8 .
e= ke~ V= (x in meter). (4.6)

g’s are computed according as zx, the distance
of observing station from the pressure disturb-
ance varies (Table 1). The not-so-small values
of £ given in the Table 1 permit the appearance
of the Airy’s phase within 10 hours from the
onset of the oscillations initiated by a newly
arrived atmospheric pressure disturbance.

5. Energy considerations

(1) Free edge waves

In the case of no forced oscillations, the
equations (2.1) lead to

s - 2 -
hcyy+h@,£y+<%~k2h>:=o,
or
5 - g2 5
yiyvaCy-{—(%—k?y)C:O, 5.1
for h=ay, where

(Z’ w, v)= [Z(:l/), a(y), 'ﬁ(y)] £t kT=01)

Replacing above { and y to 7 and £ by means
of E=e ¢y, E=2ky the equation (5.1) is trans-
formed to

& dn [ o 1\
o +1-0F+ (g5 0, 62

of which solutions are

n=Lx(§), n=0,1,2,....
or rewriting by the original variables we have

{=ae " Ly (2ky) et¢k==79, (5.3)

where
L.
2gak 2
or
a*=(2n+1)gak . (5.4)

(5.3) and (5.4) are well-known formulae for
the n-th mode edge waves. Let us consider
only the case of the fundamental mode 7n=0:

{=ae * cos (kx—at) (56.5)
and using u;=—¢{; and v;=—¢{, we obtain
u= Eglc—e"‘y cos (kx—at), l‘
" \ (5.6)
v= gg-e"’“f sin (kx—ot) , “
where o is given by
o= /gak, GN)

giving the phase and the group velocity by ¢=
voa/k and c,=do/dk=c/2=ga/20 respectively.
The kinetic energy of edge waves of the
fundamental mode comprised in water mass of
unit width along z-axis, infinite length along
y-axis and from the surface to the bottom is

E oo Soo Szz/k SO
K=— .5\ a d
27!' 2 0 y 0 z —ay

(¥+v?) dz.
(5.8)

Substituting (5.6) into the integrand of (5.8) and
carrying on the integration we obtain
pga® _ pga®  ga
K: _

& ~ 8§ o ©9

As for the potential energy of water mass
due to the wave motion we obtain

=] 2x/k
) —k-—‘-’-‘lg dyg L dx.

=575 . . (5.10)

Substituting (5.5) into (5.10) we have
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_ pga’ _ pga® g
o= 8 ~ 8 a? =K.

(5.11)
Therefore, the total energy E is given by

pga® _ pga®  go
E=K+0=—"—=—— =, (512
4k 4 a? 6.12)
If the free edge waves transfer to region with
different bottom slope, the conservation of
energy requires Ec,=const. or

pga®  ga  ga  pad’ g>3
E = P A T R 2 —
Cq 1 pe 5 3 <0 a*=const.
(56.13)

This implies the amplitude a is proportional to
Moreover,
using (5.7), wave length A=2z/k is proportional
to a on the condition that ¢ is constant. Hence,
we can conclude that if the edge waves transfer
from one region to another with smaller bottom
slope directly, the amplitude and wave length
change like

a~t, if ¢ or the period is invariant.

ap (%) 21 ay
—_—=— = (5.14)
as ay :12 Qg
where suffices 1 and 2 refer to the first and
second region respectively.

(2) Forced edge waves

In this case, it is better to consider the overall
energy included in ‘an envelope formed by the
Airy’s function rather than consider the energy
per one wave length of the individual wave.
The kinetic energy and potential energy con-
tained in the water of the length of the envelope
x1 and of the infinite length to y direction are

___ﬁ A1 é{[i o
K= 5 S [gé dx&) dy, (6.15)

0z dz=0

“:%Qg“cmj dy, (5.16)
0

0
where x; is the end point of the first envelope*.
#, the velocity potential is given from ¢,=¢{
and (4.4)** resulting
* In Fig. 1 the point P stands for kx=128.7 which
is derived from the first zero point of Ai(—7)
ie. p=(kz/36)**=2.338.
** For simplicity, Re Co in (4.4) is replaced by only &.

_NAg ey ( _f_) 1/6’
¢_——kU e *sin( kx 7 (kzx)
2/3
al-(E)"], em
where
4 1/3 PO
N—_—<_> 72, A=——FkLe*. (5.18)
3 pga

As for ¢, in (5.15), we invoke the surface
condition
o

=22 _ NAkUe " sin <kx— i)
z2=0 at 4

X (k)8 Ail:— (’—%)“]

Substituting (5.17) and (5.19) into (5.15) and
putting (kz/36)2*=X we have

6

(5.19)

3 2 rX
g= 2meed” g ' (5.20)

), Fe0aX,

where
F(X)=[1— sin (72X%?)] X2 Ai?(— X)

and X;=2.338.
After some manipulation using (4.3), (5.16)
reduces to ‘

2 Xy .
-———~—~S GX)dX (56.21)
0

where

G(X)=[1+sin (72X*®)]X1? Ai® (- X).

sin (72X%2) in F(X) and G(X) oscillates rapidly
cancelling the value of the integral including
trigonometric term, then (5.20) and (5.21) give
almost equal results:

X X
g F(X)dX= go G(X)dX
0

X;
:j X2 AR(— X)dX=0.442 . (5.22)
0

Thus, we obtain the total energy comprised in
the first envelope as follows:

3 PgA*
k2
pgA*

kZ

E=K+0=0.442x54x

=23.877°

(6.23)
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If an atmospheric disturbance advances from
a region to another with different bottom slope
without altering its physical parameters (speed
of translation U, pressure distribution, horizontal
scale L and so on) the input energy given to
the waves is constant. Hence the energy con-

servation law gives the formula

A A

I 27

=const. ,

(5.24)

implying the amplitude factor A relates inverse
proportionally to the wave length. Since k is
proportional to a (k=ga/U?, U is constant), A
also does so.

Thus, if a decreases the energy conservation
law above mentioned requires A to decrease,
directly after the atmospheric disturbance entered
into the new region 2 with less bottom slope @,
from the region 1 with larger slope @;. But
after sufficient time elapsed, A must obey the
following relation to be adapted to the new
region,

= 20—]6[,6““‘
oga

L a), W=0) (5.25)

which is defined in the equation (4.3). Accord-
ingly, A increases when « decreases contrary to
the result derived from the energy conservation.
Therefore, the decrease in A by the relation
(5.24) must be restored to the value given by
(5.25) after some time.

Now, the quantities with suffices 1 and 2 refer

to the regions 1 and 2 respectively. From (5.24)
we obtain

Ay’ _ ks Qs

1 " a (5.26)

the prime attached to A’ being used to distin-
guish it from A,, namely from (5.25) we get

Az’_ galL 2%
—A—l——expl: e (1— - )] (5.27)

For as<<a, As’ is smaller than As. A reasonable
numerical example such that L=6km, U=24
m/s (87.5km/h), g=9.8 m/s?, a;=0.02 and a

=0.01 gives
A 1 A
=—, =2.77,
A 27 A 7
or
A= A

—=2.27.

A (5.28)

At any rate, the discussion of the change in the
entrance of the region 2 is a theoretical con-
jecture and should be proved in future by obser-
vations.

An actual geographic example of the above
mentioned slope change is found for example,
in the sea adjacent to the coast of Shizuoka
Prefecture near Cape Omaezaki, where the
0.02 in the west side abruptly
continues to the region with «@2=0.007 in the
east. On the former shelf, when the westerlies
prevail in winter, the edge waves of the period
of 20 minutes are remarkable, giving the wave

region with a;=

number ki=0%/ga;=0.140km=!. Using (5.27)
we obtain
o [any )]
a, =P
~exp[k1L<l—~—~>:]:l.84,
and
Azl_ Ay
A —=0.35,

hence, As is about 5.3 times larger than A,’.
Anyhow,
when the forced waves fed by the constant
atmospheric input energy enter into the region

this theoretical consideration shows

with less bottom slope, the amplitude decreases
for the time being by 1/3 of the former ampli-
tude, and then it restores the amplitude to 1.8
times of the former.

Off the coast of Shizuocka Prefecture above
mentioned, a current meter has been installed
fortuitously almost at the boundary of two
regions with different bottom slope. Compara-
tively large velocities were observed here, for
example 70 cm/s of speed was recorded to one
direction then the same amount to the opposite
direction, and the oscillations represent some-

what complicated features. These facts might
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confirm the complex character of the motion
inferred from the theory.

6. Wave amplitude and orbital velocity

(1) Amplitude

From the equation (4.3) of the Airy’s phase,
the maximum amplitude occurs when

L \2/8
e asl f 22
(kx) Al[ (36) :|
Differentiate this and

takes maximum value.
equate to zero we obtain

Ai(—2)—4=22 AV (—2)=0, (6.1

where 2= (kx/36)?’% and Ai’(—z) is the derivative
of Ai(—z). The first root of (6.1) is 2=1.178
or in terms of kx, kx=46.03 giving

Max (kz)"/® Ai[—(%)yj

=1.893x0.522=0.988,
then from (4.3) we get

Max [{o| =0.988 NAe #v=6.055 Ae™*¥, (6.2)

where

N= (i)1/3n3/2:6.129 and A=-LL gLekt,
3 oga
Example: Makurazaki’s data (17 March 1977).
period; 13 minutes
(frequency 0=0.008 sec™1),
velocity of the pressure disturbance:
U=24.5m/s (88.2km/h), (equal to
the wave speed, computed from
U=ga/ o)*,
bottom slope: a=0.02,
wave number: k=¢ga/U?=0.33 km™!.

Maximum amplitudes are given in Table 2 for
various one tenth pressure length Li,10=3 L
by (1.4) and half pressure length L using (6.2).

The e-folding distance (the distance where
Max || decreases by e times) is given by

* This value of U can be also applied to that of
the pressure disturbance, since at that time the
wind velocity by which the disturbance is steered
is average 90 km/h, between two isobaric surfaces
of 500 mb and 300 mb,

Table 2. Maximum amplitudes of the Airy’s
phase when the pressure change is po.

Li/10 L kL kLe kL Max | Col
(km) (km) (cm)
X&e-ky
9.1 3.03 1.00 0. 368 111.4
15 5.00 1.65 0.317 96.0
20 6.67 2.20 0. 243 73.6
30 10.0 3.30 0.122 36.9
40 13.3 4. 40 0. 054 16.4
50 16.7 5.50 0.022 6.7

100 33.3 10.99 0. 00018 0.05

Ye=1/k=3.03km. If one tenth pressure length
Li;10 is mesoscale (say 20km), the maximum
amplitude at the coast (y=0) amounts to 73.6
cm, even the pressure fluctuation is small (say
po=1mb). This may be interpreted as follows:
The wave energy accumulated toward the
coast side within a distance 7, is
2
o )
Hence, the rate of energy E,, to total E con-
tained in whole volume is given by

Ey
L

:l—e‘fwozl—exp<— 93?;0), 6.3)
which decreases according as a decreases. For
example, for £=0.33km™ and «=0.02, 28 %
of total energy E accumulates within 1km
(yo=1) of distance from the coast, for a=0.01,
it decreases to 15 %.

(2) Orbital velocity

Horizontal components of the orbital velo-
cities of water particle along and perpendicular
to the coast are obtained by differentiation of
(6.17) with respect to x and y respectively giving
for the z-component:

2/5
U=p@z= %e‘“(lm)“s Ai [—(%) :l

T 1 . T
Xcos(kx——4—>+ %sm(kx—z>
. 361/3 “16 ~I[_<£{)2/3J

Bixg DA 36

Xsin(kx—%). (6.4)
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The third term of the right hand of this
equation is small due to the factor 36'/3/54%6
=0.010 compared to the other terms, then
ignoring it (6.4) reduces to

u=e= Vil [ 14— S eos (0-1), 65)

where
_NAg ., e |: (kx)”?
Vikz)= 7€ (kx)V/® Ai 36 s
(6.6)
and
I L VP S
0=kx 4,% tan in

Similarly, the y-component of the velocity v
is simply given by

v=g¢,=—Ve *¥sin bl . 6.7

If kx is not so small (say, kx>1), 1/(6kx)® in
the square root of (6.5) is negligible to 1, hence
(6.5) reduces to

u="Ve ™ cos (0—1X). (6.8)

Elimination of # from (6.7) and (6.8) gives
u? 4 v? cos 2X=V2e 2% cos?X, (6.9)
representing the ellipse with the eccentricity

«/Ztanl . 1
J1+tanZy 3¢2kx

(6.10)

e= 4/1—cos 21=

if tan?X=1/(6kx)? is ignored against 1. In the
region somewhat seperated from the pressure
disturbance, kz is not so small, hence e is small.
Therefore, we can infer the top of the velocity
vector depicts the circle with radius Ve *¥ far
behind the disturbance.

The velocity vector rotates counter clockwise
if the disturbance accompanying the waves
advances to the negative z-direction and vice
versa.

Some theoretical maximum values of the
orbital velocities of the Airy’s phase with given
U and a (U=24.3m/s, a=0.02 for Makurazaki)
are given in Table 3 using the equation (6.6)
for (kx)max=46.03.

Table 3. Maximum orbital velocities accompany-
ing the maximum amplitude of the Airy’s phase
with U=24.3m/s (87.5km/h) and «a=0.02
(Makurazaki), against various L;,10=3L, the
one tenth pressure distance.

Lis10km kLe*E Vo cm/s Vi cm/s
y=0 y=1km
9.1 0. 368 44.9 Xpo/pg 32.3 Xpo/pog
15 0.317 38.7 27.9
20 0.243 29.6 21.3
30 0.122 14.9 10.8
40 0.054 6.6 4.7
50 0. 022 2.7 1.9
100 0. 00018 0.0 0.0

7. Observational background

The author was tempted to consider that an
air pressure fluctuation triggered by a strong
mesoscale convection might be one of the im-
portant mechanism of edge wave generation with
comparatively short period.
pertinent analyses of stability of the air layer
virtually have to be done. However, we must
here show only superficial and biased picture
and exact analyses will be left in future.

KIMURA (1982) describes in brief report that
when a cold air flows over the warm sea sur-

In this connection,

face, a mesoscale cellular convection arises and
can be detected as a patch of cloud on a photo-
graph taken by a meteorological satellite. In-
itially, the convection cell is open type but
during its translation over the warm sea, it
becomes larger and more noticeable resulting
formation of a closed cell.

Practically, YAMADA (1982) analysed the gust
observed only over the sea (Tsushima Strait,
western part of Japan, warm water prevails)
on 11th October 1979. Before the gust broke,
the air temperature lowered by 2.0°-2.5°C in
the layer of 200m-1,400m of altitude, on the
other hand, increased by 4°C on the surface
resulting the generation of the strong convec
tion. The instability caused the gust.

On the shelf adjacent to the pacific coast,
Shizuoka Prefecture, possibility of edge wave
generation is somewhat certain from the con-
tinuous velocity observation in the sea near the
coast. For example, on 26th Mérch‘l@éi’;vthe
large value of longshore current speed of 70 cm/s
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(16 March 1977).
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Simultaneous records of microbarometer

(the speed sensor is located in the depth of 16 m
and 2.5km apart from the coast) was observed
when the cold west wind of speed about 25
knots was blowing.
day showed the region was covered by cold air
mass behind the cold front and the air temper-
ature on the ground amounted to 4.7°C and
—2.9°C on the isobaric surface of 850 mb (about
1km high) giving the lapse rate of 8°/km sug-
gesting the strong instability. Anyhow, these
convective cells above mentioned caused the air
pressure fluctuations.

The example of Makurazaki situation cited
frequently before is a noticeable clue to this
problem. A microbarometer is equipped at
Kagoshima District Weather Station. At the
time of the appearing of air instability, the
sensor records the frequent pressure fluctuations

The weather map on this

as shown in Fig. 4 where simultaneous records
of the water level at Makurazaki are also given™®.

However, the simultaneous records in this
figure somehow preclude from inferring the close
since two stations
separate about 40 km of distance and the pres-
sure fluctuations recorded at Kagoshima, are the
result of passing of the disturbance not on the
sea but on the land from the west. But we
can surmise the more active fluctuations may

correlation between them,

occur on the sea adjacent to Makurazaki, since
the front extends from the east to the west
over the sea area.

Let us pick up a protuberant fluctuation from

* According to Table 3, if Li,10=9 km, V1=70cm/s
may be realized with po/pg=2.2 or py=2mb.

10min

1.25mb -~ - - - N7
>

_T__‘__ug__
N

o

=
3

e _

Fig. 5. An example of pronounced pressure
fluctuation occurred on 16 March 1977,

the records in Fig. 5. This occurs at 2h with
1.25 mb pressure change and duration of about
25 minutes, its horizontal size being surmised to
be about 36 km of one tenth pressure or 12km
of half pressure -length (3L=L;,10). Here, the
wave speed U is computed from U=ga/0o, giving

5m/s (88.2 km/h), o being 0.008 sec™! (period
of 13 min., the optimal period at Makurazaki),
hence Ly,10=88.2%x25+60=36.7km. Thus we
adopt L=12km approximately.

Since k=g¢ga/U?=0.33km™, kL=3.96. From
(6.2) we can compute the maximum half ampli-
tude of the edge waves of fundamental mode
for kL=3.86 and a=0.02:

Max Lo= -fsoﬁ kLe+t 2o

bo Po

=302.8x0.076-—=22.9 X “— (cm) .
0g ©og

If po=1.25mb, Max |{s| amounts to 28.6cm,
the total wave height being about twice of this
value giving 57 cm. Actual maximum height is
78cm at 5h20m, 17d March 1977. The theo-
retical value increases to 78 cm if pg is 1.7 mb,
the value easily realizable by the convection on
the warm sea.
To confirm the above mentioned theory, follow-
ing observation scheme will be needed in future:
(1) At least two stations must be aligned
along the coast to observe surface elevations
and orbital velocities near or somewhat off
the coast, so as to get the exact propagating
speed of the edge waves.
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{2) Meteorological observations such as wind,
temperature aloft particularly that of pressure
fluctuations is important to get a correct
knowledge of the pressure change due to a
convection.

8, Conclusions

(1) The edge waves of the comparatively
short period, say, from several minutes to one
hour, can be generated theoretically by a pres-
sure fluctuation exerted on the surface of the
sea. This fluctuation is triggered by a meso-
scale convective cell. Observational evidences
represent the theoretical conjecture is right on
relevant weather condition.

(2) The pressure fluctuation is pronounced
when the air layer is highly unstable such as
in frontal zone or by continuous blowing of
cold air over the warm sea surface. A mathema-
tical model of pressure change is given by (2.4)
to facilitate the mathematical manipulation.

(3) The theoretical development is the same
as that of waves behind a moving ship. In the
present case, a ship is replaced by a pressure
disturbance of infinite horizontal extension, and
the phase velocity of the waves U is equal to
that of the disturbance.

(4) The Airy’s phase turns on at compara-
tively early stage of the wave developing, and
the oscillations represent a beat-like feature.
The maximum amplitudes of the oscillations
were calculated for various horizontal size L
(half pressure length). When ¢L/U is large, o
being the angular frequency of the waves, the
wave motion is very small since the factor
¢ L'V fades out rapidly as ¢L/U increases.
This implies the waves are remarkable for small
L and large ¢ (short period).

(5) The amplitudes of the forced edge waves
depend not only upon the pressure change but
also upon the bottom inclination.

(6) After the Airy’s phase disappeared, a
stationaly phase represented by (4.5) continues.

(7) Some actual data observed at Makurazaki
The data confirm the validity of
the theory, if relevant physical quantities of a
pressure disturbance such as L, U and po (fluctu-
ated pressure) are given. po can be observed
exactly by a microbarometer, however decisions

were given.

of L and U accurately are somewhat elusive
unless plural equipments are available.

(8) When the atmospheric pressure disturb-
ance proceeds to the region with different bottom
slope, the behaviors of the forced edge waves
are somewhat complicated. Initially, the change
in the amplitude obeys the conservation of the
input energy (the amplitude being proportional
to the bottom inclination) but presently, the
amplitude must change spontaneously to accord
with its proportionality to the exponential func-
tion of the inclination (Aocce72E/V2 see (4.3)).
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Appendices
(A) Evaluation of the integral of (2.16)

I= Soo ot v 9aikt=ikz—k(y+L) dk . (Al)
Putting
2 2
[T VLU I A
xX X X
1

(A.i)' is transformed to

x2

—00

2 (oo
I gat S SMLI=1B22=1] y

e—’[AW/r,:(X‘:g/2)2*@2/4] de

_gar® (*
- x2 —0c0

2
Further replacement 72:i;\1<x—%> /77 gives

29a8® ,4< 7 ([ ~
=—2 ety —<— Te i dr
[==ge iM e

1 \/ ?73 e —z2 )
— 2 drt
oV i S_of

(28 e (2-3)
=\ exp ¢ 1 1)

Assuming 8<1,

E‘M7?3 1/2 zgatz 1/2 C e/ ‘Tgatfl 1’2
(5 () e (55)

and

- 00

(A.2)

Finally, we obtain from (A.2)

2\ 1/2 2
I%( rgat ) exp[»« gai (y—{—_]_i_)]

x? 4a?

X |:.<_gozt2 i)]
exp| i 1)

(B) Airy’s function
Let us consider the integral in (3.5):

(A.3)

J:S:oexp'i[%(t-to)2+€(t~to)ﬂdt. (B.1)

Putting \/ lg‘ (t—to)=0 in this integral giving

J= \/;Z’Sm gl(o2+ea®) g5
lgl )yt

Invoking (3.2) and (3.3), the lower limit of the
integral is

VAP S
2 4z U U

which is large if the disturbance transfers long
distance on the shelf; Then, we may be per-
mitted to replace the lower limit by oo com-
mitting only a small error:

2 =
J:\/ S i(o2+e08) 7, , B.2
FIRES 7 B2

where e= 4/ 2|7]/31¢|*2, see (3.6). Further we

replace ¢ to 7 by the relation

giving

8 o 2
ool e

173 2 /3%
:2n<3> Ai[—i <3> ] (B.3)
r 2r\r R
where Ai(—z) is the Airy’s function defined by

(3.11) or if we put (3a)!*r=7; in (3.11) we
obtain

oo -3
Ai(—z):ij cos<‘—3‘—zr1>drl. (B.4)
0

For |z|>>1 the asymptotic formula to Ai(—z) is

kk

A=z~ ﬂlzw sin(%z”?—l-%) L (B.5)

* ABRAMOWITZ et al., Handbook of Mathematical
Functions, Dover Ed. p. 447

** COPSON, Asymptotic Expansions, Camb. Uniy.
Press, p. 105.
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Alain SOURNIA**

Les recherches francaises actuelles sur le phytoplancton
marin et la production primaire*

Alain SOURNIA**

Résumé: On tente ici de dresser un tableau sommaire des recherches effectuées récemment
(au cours des dix derniéres années) ou actuellement par les océanographes frangais dans le
domaine du phytoplancton marin et de la production primaire. Il ne s’agit nullement d’une
“revue’’ exhaustive mais de la sélection, toute subjective, des recherches qui apparaissent au
compilateur comme les plus significatives ou les plus prometteuses; dans chaque cas, une ré-
férence bibliographique (une seule, généralement) est donnée a titre d’exemple. L’exposé
énumeére tout d’abord les activités et les spécialisations des divers laboratoires des cotes frang-
aises, aprés quoi sont examinés les travaux réalisés en Méditerranée, dans 1’Atlantique et le
Pacifique tropicaux et dans 1’Antarctique. Quelques informations pratiques (adresses, document-

ation) sont fournies en Appendice.
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Fig. 1. Principaux centres de recherches océano-
graphiques des cOtes frangaises. Les noms
ne sont indiqués que pour les centres actuel-
lement les plus actifs dans le domaine du
phytoplancton et de la production primaire.
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A Commentary Note on “Temperature and Salinity Changes
in the Tsushima Current” by R. L. KOLPACK*

Takashi ICHIYE**

1. Introduction

Kolpack’s analysis (1982) of the maximum
salinity core in the Taushima Current may be
very important, since this situation was not
noticed or emphasized previously (e.g. MORI-
YASU, 1972; SHUTO, 1981). The high salinity
water in the Japan Sea most probably origi-
nates in the Tsushima Strait. Therefore, if the
supply of this water through the strait is almost
constant, then the salinity values of the core
will show a decrement downstream because the
surrounding water in the Japan Sea has a lower
salinity than the core. However, Kolpack’s
illustrations of the salinity of thé core show
higher values on the downstream side in general
(Figs. 3 and 6) except during February-March
(Fig. 7). Of course, there is a possibility that
mixing along the current is not uniform and
thus there are higher or lower salinity values
along the core. But it is impossible to exceed
the salinity at the strait, which is the only
Thus, the
higher salinity downstream in the core should
reflect the salinity variability through the strait.

source of the high salinity water.

2. Salinity change in the Tsushima Strait
There is no recent analysis of salinity or
hydrography of the Tsushima Strait. The only
analysis available is the one by NAN’NITI and
Fujiki (1967), who analyzed the monthly hydro-
graphic surveys at seven stations between Izu-
hara, Tsushima Island and Genkaishima, Kyushu
for the period 1913 through 1952. The monthly
mean sections of temperature and salinity (their
Fig. 1) indicate that water with a salinity higher
than 34.5% is present only from January
through June. Further, their sections show that

* Received January 14, 1982
** Department of Oceanography, Texas A & M Uni-
versity, College Station, Texas 77843, U.S. A.
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Fig. 1. Area in Tsushima Strait with salinity

values greater than 34.5 %o.

a higher salinity (above 34.6 %0) exists in the
western or central segments and in the upper
layer from January through May and only in
June near the bottom. In Fig. 1 the areas
occupied by the water with a salinity higher
than 34.5, 34.6, 34.7 and 34.8 % are plotted
versus time in months (the total area of the
strait cross section is 7.6 km?). It appears that
in March through May the water of high salinity
is most abundant. However, Kolpack’s illus-
trations for October, 1969 and July-August in
1968 through 1978 (Figs. 3 and 6) do not indicate
higher values toward the strait or the origin in
general;
excepting 1969 (Fig. 7) suggest that the source
of the high salinity water is in the strait. It
should be noted that the year to year variation
may cause some change in the horizontal pattern
because the areas of high salinity water in
Tsushima Strait (Fig. 1) are based on a 40 year
average.

whereas, values in February-March
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3. Trajectories of the Tsushima Current

In order to estimate the trajectory and the
arrival time for the high salinity water which
starts from Tsushima Strait, the surface mean
current chart by NITANI et al. (1977) is used.
The chart is based on the GEK data from 1953
through 1970 and the direction and speed of
the vectorially averaged current is shown for
each half degree longitude-latitude square. The
ratio of the surface geostrophic speed and the
average speed from 50m and 150m, based on
the 500 db reference level, is determined as 0.54
from eight hydrographic sections on board the
R/V SEIFU MARU in August-September, 1966.
Though the surface geostrophic speed is not
the same as the speed of GEK, this ratio is
used for the mean speed of the high salinity
core water which was located between 50 and
150m. Also, the mean direction of the GEK
current is used as the direction for the core
water motion. Starting from the east channel
of the strait, the trajectory and time elapsed
are determined for each half degree square.
The resultant trajectory and time mark for
monthly movement of the core from Tsushima
Strait are plotted (Fig. 2), which indicates that
the core water may reach Tsugaru Strait in
about eight months. The trajectory and the
time elapsed are derived from the mean con-
dition and their estimation is based on a rather
arbitrary assumption, thus some variations are
expected. However, this figure suggests that

135° 140°

Fig. 2. Trajectory of the high salinity core in
the Tsushima Current (solid line) and arrival
time (in Roman numerals) by month from
a starting point in the Tsushima Strait.

the high salinity core which comes through
Tsushima Strait only for six months might be
contiguous all the way to Tsugaru Strait.

4. Concluding remarks

It is established that the high salinity core is
present in the Tsushima Current during the
majority of time but its location and core salinity
values are variable on both a seasonal and
yearly basis. Consequently this core can be
used as a tracer of the axis of the current as
well as the variation of mixing processes along
Since the salt transport seems to
have a strong seasonal variation in Tsushima

the current.

Strait, it is worthwhile to monitor the salinity
distribution and the current at a section across
the strait. Since it is relatively shallow (less
than 200m), it is possible to maintain a moored
system. The downstream tracing of the high
salinity core might now be facilitated by utiliz-
ing CTD, STD or even XBST (expendable
bathy-salino-thermograph) instruments. These
measurements can provide continuous salinity
profiles, which make it possible to determine
mixing of the core with the surrounding water
where the double diffusive activities might be
strong.
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