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Long-term Variation of Secchi Depth in Kesennuma Bay

Kazue HIsSAMATSU, Hisayuki ARAKAWA, Tetsuo SEKI and Tduyomu MORINAGA

Abstract : The Secchi depth, temperature, and specific gravity of water in Moune, the head of
Kesennuma Bay were measured daily from 1971 through 1989.The collected data were statisti-
cally analyzed to study the long—term variation of Secchi depth and the causes of the varia-
tion. During the 19 years of measurement, the mean value of Secchi depth was 10.0m, and the
standard deviation was 0.7m. The monthly averaged variation became about 5m before the year
of 1977, and after that, approximately 8m more. In particular, it had 4m larger in winter. The
yearly averaged variation increased with time, showing a value of 2.1m in total. Throughout
the year except in winter, the watermass of the bay was covered with the coastal surface water.
In winter, the water mass at the depth of 3m to 10m was under the influence of outer ocean.
The correlation among Secchi depth, temperature, and salinity was high for the water in the
depth down to 1 m from the surface. The transparency was negatively correlated with tempera-
ture, while correlated positively with salinity. It is suggested that one of the causes for increase
of the long—term variation is due to the sludge dredging conducted from 1976 to 1988. This
probably causes the volume of the bay to increase; as a result, the transparency becomes
higher. The distinct variation of the Secchi depth is the result of the effect of organic/inorganic
particles carried through rivers to the bay after a downpour, and the effect of watermass origi-

nated from outer ocean.

Keywords : Secchi depth, Transparency,
Kesennuma Bay.
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Fig. 1. Map showing the observation site, Moune in
Kesennuma Bay. Hinatagai is the position con-
ducted by Kesennuma Fishery Station.
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Fig. 2. Frequency distribution of transparency val-
ues from 1971 to 1989.
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Fig. 3. Seasonal variation of monthly averaged
Secchi depth during 19 years. Error bars repre-
sent standard deviations.
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Fig. 4. Monthly and yearly averaged variations of Secchi depth from 1971 to 1989. Broken/thin line represents
one month/year moving average, respectively. A strait line means a trend from 1971 to 1989.
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Fig. 5. Temperature-Salinity diagram. (a):surface and 3m depths. (b): 5 and 10m depths. Capital letters show
water types (after Hanawa and Mitsudera,1986). K:Kuroshio water, T: Tsugaru water, O: Oyashio water,
C: Coastal Oyashio water, S: Coastal surface water, D: Cold deep water. Numerals indicate months.
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Table 1. Correlation coefficients between Secchi
depth and temperature.
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Fig. 6. Scatter diagram between Secchi depth and temperature.
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Table 2. Correlation coefficients between Secchi
depth and salinity.
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Fig. 7. Scatter diagram between Secchi depth and salinity.
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Table 3 . Dredged area, dredged mud volume and removed organic matters at Shishiori district in Kesennuma

Bay.

Work Year DredgedZ Dredged . COD. ton T'otal Ignission
area, m volume, m sulfide, ton loss, ton

1976 47,800 29,100 4317.9 37.5 1,623.1

First 1977 217,460 21,200 417.9 46.6 1,632.7

Period 1978 66,175 52,100 960.9 65.0 311.8

Amount 141,435 102,420 1,816.7 149.1 3,567.6

1980 22,850 13,800 1441 12.7 624.1

1981 20,610 8,900 141.2 12.7 648.9

iiiggg 1982 32,240 16,100 230.7 15.0 809.0

1983 25,960 14,900 147.0 11.6 695.0

Amount 101,660 53,100 663.0 52.0 2,777.0

1985 18,000 7,200 122.7 5.1 418.6

Third 1986 36,700 14,700 229.6 12.4 847.1

Period 1987 28,000 13,520 288.0 10.9 791.5

Amount 82,700 35,420 580.3 28.4 2,057.2

TOTAL 325,795 190,940 3,060.0 229.5 8,401.8
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Table 4. Difference between value in 1979 and one averaged during 19 years. Small bars indicate no differences.

Surface 3m Sm 10m
MONTH TEMP. SAL. TEMP. SAL. TEMP. SAL TEMP. SAL
MAR. +2.1 +1.6 +1.7 +0.2 +1.7 +0.1 +1.7 +0.1
APR. - +0.2 +0.8 - +0.9 — +1.0 -
MAY +0.1 —2.2 +0.5 —0.2 +0.7 —0.2 +0.8 —0.2
OCT. +1.7 —2.8 +2.4 —0.2 +2.3 - +2.4 +0.2
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Food resource partitioning among fishes in an estuarine

nursery as revealed by stable isotope analysis

Koetsu KoN”, Kouki KANOU*”, Takashi INOUE”, Atsushi KOBAYASHT”,
Ken-ichi HAYASHIZAKI” and Hisashi KUROKURA"

Abstract: Various coastal fishes use shallow estuarine habitats as nurseries. To investigate the
extent of food resource partitioning among juvenile fishes occurring sympatrically in such
nurseries, we analyzed carbon and nitrogen stable isotope ratios from three dominant coastal
fishes (Japanese seaperch Lateolabrax japonicus, yellowfin goby Acanthogobius flavimanus,
and flathead mullet Mugil cephalus cephalus) and their food source on a tidal mudflat in the
Tama River estuary, central Japan. Our isotopic data indicated that Japanese seaperch mainly
feed on fish or benthic crustaceans, and yellowfin goby feed on polychaetes or benthic crusta-
ceans. Plots of stable isotope ratios of flathead mullet showed to be far from those of sediments
or deposit organic material values, signifying their food source were not of such materials.
However, comparing with published literature showed that benthic microalgae maybe their
plausible food source because of similarity in 6 *C values and 6 “N enrichment. Thus, isotopic
compositions of those juvenile fishes differed greatly among species, indicating the evident food
resource partitioning. Such resource partitioning may play an important role in reducing inter
—specific competition on the estuarine mudflat.

Keywords: Juvenile fishes, Stable isotope, Food resource partitioning, Tidal mudflat

1. Introduction

Tidal mudflats in temperate estuaries func-
tion as nursery grounds for many coastal and
euryhaline fishes, including several of commer-
cial importance (KANOU et al., 2000; MORRISON
et al., 2002). On a tidal mudflat in the Tama
River estuary, central Japan, there exist the di-
verse communities of juvenile fishes, which
may attain densities of up to 30 species and
> 7000 individuals in a 100 —m* area during
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spring and early summer (April to June)
(KaNou, 2003; KaNou et al., 2007). Many of
these fish species are very similar in patterns of
microhabitat use (e.g., vertical distributions
and intertidal movements) (KANOU et al.,
2004a, 2005a), implying that dietary niche seg-
regation may play an important role in reduc-
ing inter—specific competition and maintaining
high species diversity. Most recent study
(KANOU et al., 2004b) has found significant
variation of stomach contents among these
fishes, even in highly productive estuarine
mudflats with plentiful food supply. However,
the results of stomach contents analysis repre-
sent food consumed over a small time period
and within a small area (KANOU et al., 2005b).
In addition, other disadvantages of stomach
content analyses include difficulty of identifi-
cation and uncertainty over whether all ob-
served stomach contents, such as microalgae
and cyanobacteria, are indigestible. One
method that allows measurement of assimi-
lated, and therefore nutritionally important,
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materials is stable isotope analysis. The stable
isotope ratios of carbon and nitrogen differ
among autotrophs (FRY, 1984; BooN et al.,
1997; BOUILLON et al., 2002). This ratio is taken
on by consumers and reflected in their tissues
at whatever trophic level they occur (PETERSON,
1999). Generally, carbon isotope ratio is useful
in estimating the source of consumers’ diets
where enrichment caused by fractionation or
metabolic effects is small or negligible, with re-
ported enrichment of only 0 — 1 %o (e.g. DENIRO
and EPSTEIN, 1978). For nitrogen isotope
value, a higher enrichment by fractionation
ranging from 2.6 % (OWENS, 1987) to 3.4 %o
(MINAGAWA and WADA, 1984) is usually as-
sumed, and is used to estimate consumer
trophic levels. These analyses also have the ad-
vantage of representing food consumed over a
relatively long period of time. In this study,
therefore, we use stable isotope analysis to at-
tempt to determine which autotrophs provide
nutrition to juvenile fishes occurring
sympatrically on an estuarine mudflat.

2. Materials and Methods

Sampling was carried out on a tidal mudflat
in the Tama River estuary (35°32’ N, 139°46’
E), located on the western shore of Tokyo Bay,
central Japan. The estuary is subjected to
semidiurnal tides with a tidal range of up to
about 2 m. The tidal current from the bay
flows along the estuary at flood tide, whereas
the effect of freshwater inflows is significant at
low tide. The sampling site was located on a
tidal mudflat approximately 3 km from the
river mouth. A map of the study site was given
by KANOU et al. (2005a). Sediment of the sur-
face layer in the subtidal zone consisted of
about 20% silty clay and 80% sand. There was
no rooted macrophyte vegetation in the site
during the study period. Samples of Japanese
seaperch Lateolabrax japonicus [n=25, 45-50
mm in standard length (SL)], yellowfin goby
Acanthogobius flavimanus (n=5, 40-57 mm
SL), and flathead mullet Mugil cephalus
cephalus (n=19, 34-60 mm SL) were caught
using cast nets on 14 May 2005. These fish spe-
cies appear abundantly in shallow estuaries
and mudflats at the end of pelagic stage (< 15
mm SL) in early spring (March), subsequently

growing within the habitat by late summer
(September). Recent examinations of the stom-
ach contents of these sympatric juveniles on the
mudflat of Tama River estuary (KANOU et al.,
2004b) indicated that Japanese seaperch,
yellowfin goby, and flathead mullet belong to
crustacean/fish feeders [the main food item
being small crustaceans (i.e., mysids,
gammaridean amphipods, and cumaceans)
and juvenile fishes], polychaete feeders
(polychaetes with small crustaceans), and de-
tritus feeders, respectively. All prey items, ob-
served as stomach contents of these fishes by
previous studies (KANOU et al., 2004b, 2005b),
were collected on the mudflat immediately af-
ter fish sampling. Planktonic prey animals,
mainly including cladocerans, were collected
using a 0.3 mm—mesh conical net (45 cm mouth
diameter and 180 cm long). Benthic prey ani-
mals, such as cumaceans, gammaridean
amphipods, mysids, shrimps and polychaetes,
were collected with a cylindrical core sampler
(11 cm diameter) that was used to extract a 300
cem’ volume (3.2 cm depth) of sediment in the
subtidal zone. Epilithic macroalgae, deposit or-
ganic mateirials [detritus in KANOU et al.
(2004b) 7, and sediments were collected by hand.
During the sampling periods, the water was
turbid, salinity ranged from 9.6 to 15.2 %o and
surface water temperature from 19 to 24°C.
All samples were kept in a cool bag during
transport to the field laboratory, and then
washed with distilled water. The samples ex-
cept fishes were immediately dried at 60 °C for
at least 24 h. Muscle tissues of fishes were
taken directly from the dorsal area, and they
were also dried at 60 °C for at least 24 h. After
drying, all samples (fish tissues and potential
prey items) were ground to a fine powder and
they were treated with chloroform:methanol
(2:1) for 3 h and 0.1N HCI for 24 h to remove
lipid and carbonates, and then re—dried. Such
removal process was conducted to eliminate
lipid and carbonate effects on muscle 6 *C
measurements. Isotopic analyses were carried
out on an isotope-ratio mass spectrometer
(Thermo/Finnigan Delta plus XP), and ex-
pressed relative to conventional standards, i.e.
PeeDee Belemnite for carbon, and atmospheric
air for nitrogen, as %o values, defined as: 6 X
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Table 1. Carbon and nitrogen stable isotope ratios (mean = SD) of the fishes and their potential food sources
collected on 14 May 2005 from a tidal mudflat in the Tama River estuary. Cumaceans, shrimps and
polychaetes samples were pooled for isotope analysis due to small amounts collected.

Samples 6 "C (%o) 6 "N (%o) n
Fishes
Lateolabrax japonicus —16.60.4 11.7+1.6 5
Acanthogobius flavimanus —18.840.9 11.4£0.7 5
Mugil cephalus cephalus —15.6%+2.5 9.0£1.1 19
Food sources
Cumaceans —19.0 5.7 3 (pooled)
Gammaridean amphipods —20.5*1.7 5.5%0.5 3
Mysids (5—9 mm in Body Length, BL) —17.8+£0.6 7.5%0.6 3
Mysids (10—15 mm BL) —18.6%0.3 7.520.6 3
Shrimps —18.3 10.6 3 (pooled)
Polychaetes (5—9 mm BL) —20.3 10.2 3 (pooled)
Polychaetes (10—25 mm BL) —21.5 8.2 3 (pooled)
Zooplankton —22.6%0.1 6.310.1 3
Epilithic macroalgae —19.7£1.2 0.7£1.8 3
Deposit organic materials —27.2+0.4 2.0£0.5 3
Sediments —25.0%1.2 5.1£0.8 3
16 = @ Lateclabrax japonicus

@ Acanthogobius fi
O Mugil cephalus cephalus
B Cumacems

H Gammaridean amphipods
N Mysids (5-9 mm BL)

B Mysids (10-15 mm BL)

BRI

A O Shrimps

i %/ Polychaetes (5-9 mm BL)
W Polychaetes (10-25 mm BL)
X Zooplankton
A Epilithic macroalgae
A\ Deposit organic materials
A\ Sediments

! Benthic microalgae

"‘4 T T
=30 -25 -20

[

(literature data)

-15 -10

Fig. 1. 6 "C and 6 "N plot of fishes and their food sources from a tidal mudflat in the Tama River estuary, cen-
tral Japan. Broken line shows typical 6 “C and 6 "N range for benthic microalgae collected from similar
intertidal mudflat (RIERrA et al., 1996; Yokoyama and Ismir, 2003; AL-ZAIDAN et al., 2006). Error bars indicate
standard deviations. See Table 1 for detailed values for samples.

= (R sample — R standard) / R standard X< 10’
(%0), where X = "C or "N, and R = “C/"C or
"N/"N. Experimental precision (based on stan-
dard deviation of replicates of an alanine stan-
dard) was better than 0.15 %o for both ¢ “C and
6 "N.

3. Results

The carbon and nitrogen stable isotope ratios
of samples are summarized in Table 1. Isotopic
compositions among three fish species showed

different values (Fig. 1). The mean 6 "C value
from L. japonicus was similar to those of M.
cephalus cephalus or benthic crustaceans
(mysids or cumaceans), and its § N value was
enriched by about 3 %o by these two food items.
A. flavimanus showed similar 6 ”C value with
polychaetes or benthic crustaceans (mysids,
cumaceans or gammaridean amphipods), and
with an enriched & "N value comparable with
to these food resources. Isotopic compositions
of flathead mullet were greatly different from
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those of sediments or deposit organic materi-
als.

4. Discussion

In our study, isotopic compositions of three
fishes differed greatly among species (Fig.1),
indicating their food preferences was different.
Such dietary niche segregation may play an
important role in reducing interspecific compe-
tition and maintaining high species diversity
on tidal mudflat as nursery grounds.

Qur isotopic data indicated that Japanese
seaperch and yellowfin goby mainly fed on fish
or benthic crustaceans and polychaetes or
benthic crustaceans, respectively (Fig. 1). The
results were consistent with previous reports
(KANOU et al., 2004b; KANOU et al., 2005b) us-
ing stomach content analysis. However, iso-
topic result from flathead mullet was different.
Stable isotope ratios of mullet were plotted far
from sediments or deposit organic material val-
ues (Fig. 1), indicating their food source were
not such materials. Their plausible food source
would be benthic microalgae because they had
similar & " C value to typical benthic
microalgae which collected at similar intertidal
mudflat (6 *C = -14.7 to —16.9 %o; RIERA et al.,
1996; YokovaMA and IsHil, 2003; AL-ZAIDAN et
al., 2006), and had 2.4 — 4.4 %o enriched 6 "N
value compared to microalgae (6§ "N= 4.6 to
6.6 %o; RIERA et al., 1996; YOKOYAMA and ISHII,
2003). Indeed, LIN et al., (2007) reported
detritivorous fish including mugilidae (Liza
macrolepis) assimilated benthic microalgae in
tropical or subtropical region.

Detritus, such as deposit organic materials,
is generally considered to be one of the most
abundant food resources in tidal flat sedi-
ments, being utilized by most small inverte-
brates (e.g. copepods, ostracods, amphipods,
annelids, and snails) that are in turn com-
monly consumed by tidal flat fishes (REISE,
1985). On the mudflat in Tokyo Bay, mugilids,
blennids, clupeids, and cyprinids fed largely on
detritus (KANOU et al., 2004b). Despite the
abundance of detritus, it is well known that the
direct nutritional values of them are very
low for fishes (e.g. PRINSLOW et al., 1974;
D’ AvaNzo and VALIELA, 1990; LARSON and
SHANKS, 1996). Therefore, the specialist

feeders, such as flathead mullet in this study,
might select higher quality detritus including
microalgae by the taste buds on the gill arches
(HossLER and MERCHANT, 1983; LARSON and
SHANKS, 1996), while the generalist feeders pos-
sessing a bit of detritus might swallow it with-
out selection when they fed on other foods. In
any case, such feeding at a lower trophic level
may play a role at rapidly transferring energy
and materials up the food web.
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Introduction

Elemental composition of suspended particulate
matter in Bangpakong River Estuary, Thailand

Nattapong LOASSACHAN", Shettapong MEKSUMPUN”,
Kazuhiko IcHIMI” and Kuninao TADA"*

Abstract: The elemental composition of various suspended matters in a large river estuary was
investigated. Chlorophyll @ (Chl @) concentration, particulate organic carbon (POC), particu-
late organic nitrogen (PON) and particulate phosphorus (PP) were determined in the
Bangpakong River Estuary, Thailand, in November 2002 and November 2004. The latter obser-
vation included the upstream sites (salinity varied from 0-27). Moreover, the particulate phos-
phorus was determined by dividing into particulate organic phosphorus (POP) and particulate
inorganic phosphorus (PIP). Good correlations between Chl ¢ and POC, PON, PP (or POP)
were observed. The average stoichiometric ratio of suspended matter (organic C : N : P) calcu-
lated from each slope of linear regression was consistent with the Redfield ratio. It showed that
the major composition of organic particulate matter in the estuary predominantly originated
from the phytoplankton—derived material. However, the PIP contribution to total PP (11—
489%) in the estuary can not be ignored. Additionally, PIP contributions in the mixing zone be-
tween fresh and saline waters were particularly high (up to 75%). PIP decreased gradually to-
ward the offshore likely, because inorganic phosphorus was released from suspended matter
and PIP was also diluted with an increase of salinity.

Keywords: estuary, suspended matter, Bangpakong River, biophilic element, phosphorous

within ecosystem (TURNER and MILLWARD,

In estuaries, phytoplankton production is
very high due to sufficient nutrient supply
from riverine run off. Also, the biogeochemical
processes are active in the estuarine environ-
ment due to the dramatic change in salinity
and high phytoplankton production. On the
other hand, suspended matter, contains many
kinds of allochthonous materials, including nu-
trients, organic materials and heavy metals, is
transported from river to marine environments
autochthonous materials are also produced
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2002). Therefore, the estuaries play an impor-
tant role in material exchanges and
biogeochemical processes between the land and
marine environments. Suspended matter is
studied widely in estuarine environments in or-
der to characterize and better understand the
nutrients and organic materials supplied in the
form of suspended matter from riverine input
which can greatly influence coastal environ-
ments. Previous studies reported that the
changes of salinity are able to regulate the ad-
sorption and desorption of nutrients, especially
phosphorus (FaNg, 2000; SUZUMURA et al.,
2000).

Unlike carbon and nitrogen, the chemical na-
ture and forms phosphorus has been poorly
characterized in aquatic biogeochemical proc-
esses thus far, but recent studies have demon-
strated that phosphorus plays a great role
in limiting global primary productivity
(SuzuMURA and INGALL, 2004 and references
therein). Hence, it is necessary to better
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understand the characterization and behavior
of phosphorus in aquatic environments.

In the present study, the biophilic elemental
constituents (C, N and P) of suspended matter
as well as Chlorophyll a (Chl a) were investi-
gated in a large river, the Bangpakong River
Estuary, Thailand in order to more understand
about the behavior and characteristic of sus-
pended matter in estuarine area. Moreover, we
showed that the contribution of particulate in-
organic phosphorus to total particulate phos-
phorus can not be ignored as well as the
abundance and distribution of chemical frac-
tions of phosphorus contained in suspended
matter was also quantified along the
Bangpakong River to the estuary.

2. Materials and Methods
2.1 Study area

The Bangpakong River is one of the most im-
portant large rivers that discharging fresh wa-
ter into the head of the Gulf of Thailand and is
considered to be an important source of inor-
ganic nutrients and organic materials loaded
into the eastern part of the upper Gulf of Thai-
land. Additionally, the Bangpakong River Es-
tuary 1is a eutrophic embayment where
phytoplankton bloom often occurs in the sur-
rounding area (BURANAPRATHEPRAT et al.,
2002). The watershed covers 18,500 km®, and
the river runs from the conjunction of two
smaller rivers, the Ha-nu-man and the Pra-
prong, 220 km upstream of the river mouth.
The Bangpakong River is strongly influenced
by the wet Southeast monsoon from late May
to October-mid November and the dry North-
east monsoon, during the late November/Feb-
ruary period, thus generating two well-marked
seasons. Usually, the wet season lasts from
June to November and the dry season from De-
cember to May. Air temperatures ranged from
23.8°C to 32.6°C, with a yearly average of 27.9
°C. Annual rainfall averaged 1315mm for the
period 1961-1991, and the number of rainy days
covered one third of the year. Usually Septem-
ber has the maximum rainfall. About 96% of
the annual river discharge occurs during the
wet season (BORDDALO et al., 2001). Recalculat-
ing the data from BOONPHAKDEE et al. (1999)
for the period 1993-1996, the total annual

freshwater discharge into the inner Gulf of
Thailand averaged 8.44km® (512m’s 'during the
wet season and 21m’s 'during the dry season).
In the estuarine area, the tidal current plays an
important role in transporting particles out of
the estuary in a short time, and the seasonal
variation in residence time depends on
the variation of wind-driven circulation
(BURANAPRATHEPRAT and YANAGI, 2003). Re-
cently, the Bangpakong River Estuary is
eutrophicated and the red tide (e.g., Ceratium
Jfurca) has often occurred. According to the
large supply of inorganic nutrients from
riverine input, dissolved inorganic nitrogen
(DIN), phosphate and silicic acid concentration
up to 75.5, 4.85 and 66.0 M were observed in
Bangpakong  Estuary = (MEKSUMPUN S,
Kasetsart Univ., personal communication)
2.2 Sampling strategies

This study was conducted in 2 observation
cruises (November 2002 and November 2004) in
the Bangpakong River Estuary, including up-
stream of the river in the latter observation.
Surface water samples were collected from
sampling stations (Fig. 1) using a clean bucket
and stored in plastic bags in dark and cool con-
ditions until further filtration in the labora-
tory. Additionally, salinity of surface water
was measured onboard using a CTD (YSI
6600).
2.8 Filtration and chemical analysis

Particulate matter measured in this study in-
cluded Chlorophyll a (Chl @), particulate or-
ganic carbon (POC), particulate organic
nitrogen (PON), particulate phosphorus (PP)
and particulate inorganic phosphorus (PIP).
PIP was not measured on the samples collected
in November 2002. For Chl a sample, water
sample was filtered though glass fiber filters
(Whatman GF/F), and then Chl a was
extracted from the filter with 90% acetone
in glass tube, placed in dark at 4°C for 24
hours and determined following the
spectrophotometric method of LORENZEN
(1967), as detailed in PARSONS et al. (1984). To
determine POC and PON, water sample was fil-
tered through a pre-combusted Whatman
GF/F (450°C, 2 hours) and rinsed with
deionized water after filtration to remove the
salt, and then the filtered sample was measured
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Table 1. Salinity and concentrations of particulate biophilic elements in surface water sample from
Bangpakong River Estuary (ND = no data) .
2002 2004
Station . POC  PON PP . POC  PON PP PP POP
No. Salinity ( lill) (zmol- (gmol- (gmol- Salinity ( lf,) (zmol- (gmol- (gmol- (gmol- (xmol-
“e caH NI P Le ) NI PI)  PI) P
15 5.3 2.4 131 14.6 1.55 30.5 2.5 105 13.7 0.43 0.04 0.38
16 3.2 6.7 149 18.1 1.52 30.9 3.6 51 7.5 0.57 0.22 0.35
17 3.4 2.7 143 22.6 1.88 30.9 4.3 62 8.4 0.70 0.26 0.44
18 17.2 17.1 202 30.7 ND 31.0 5.3 92 11.9 0.84 0.16 0.68
19 13.8 40.1 415 61.9 7.33 31.6 11.3 71 7.8 1.91 0.84 1.07
20 29.1 7.5 130 17.4 1.13 31.8 8.0 85 10.8 0.81 0.36 0.45
21 24.1 8.3 194 28.6 ND 31.7 40.1 159 22.3 1.90 0.70 1.19
22 16.6 28.0 279 42.0 4.05 31.8 20.0 119 17.2 1.22 0.52 0.70
23 23.3 28.0 ND ND ND 32.1 8.0 67 7.0 0.48 0.14 0.35
24 18.8 17.8 122 15.7 1.38 32.0 2.7 o7 6.4 0.43 0.19 0.24
25 22.1 10.7 235 22.1 ND 32.0 4.0 44 4.9 0.35 0.14 0.21
26 23.6 2.0 ND ND ND 32.0 10.8 88 10.3 0.76 0.32 0.44
27 28.8 2.1 ND ND ND 32.0 2.7 58 6.0 0.40 0.17 0.24

with a CHN corder (MT-5, Yanaco, Japan) af-
ter acidification with the fumes of concentrated
HCI to remove carbonates. Prior to filtration of
PP and PIP, a pre-combusted Whatman GF/F
(450°C, 2 hours) was sequentially washed with
1M HCI and deionized water and rinsed thor-
oughly with 0.17 M Na;SO,after filtration
(SUZUMURA et al., 2004). PP and PIP were de-
termined based on the protocol of ASPILA et al.
(1976) as detailed in SUZUMURA et al. (2004).
Briefly, PIP filtered samples were extracted
with 1M HCI as ortho-P at room temperature
for 12 hours, while PP filtered sample was com-
busted at 470°C in a muffle furnace for 2 hours,
kept until they cooled down and were also ex-
tracted with 1M HCI, under the same condition
as was used for the PIP samples. Aliquots of
the supernatant were allowed to determine the
ortho-phosphate concentration using the acid
molybdate-ascorbic method (PARSONS et al.,
1984). Particulate organic phosphorus (POP)
was calculated from subtraction of PIP from
PP.

3. Results and Discussion
3.1 Distribution and composition of suspended
matter in estuary
The results of chemical constituents of sus-
pended matter and salinity in the Bangpakong
Estuary are given in Table 1. In 2002 observa-
tion, salinity generally increased from the
riverine sites to the estuarine sites (salinity 3—

29) (Table 1). The Chl @ concentration varied
from 2.03 to 40.1 ©g Chl a 17" with the highest
concentration found near the river mouth. As
given in the same table, POC and PON ranged
from 122 to 415 g mol-C 17" and 15 to 62 ¢ mol-
N I, respectively. PP varied between 1.13 and
7.33 pmol-P 1", In Fig. 2, it is apparent that
the concentrations of chemical constituents
containing of suspended matter showed the
highest concentration around the river mouth.
Moreover, the distribution of organic particu-
late matter showed a similar trend to the dis-
tribution of the Chl a concentration which also
increased gradually from inland river area and
peaked at the river mouth. Hence, the increase
of organic particulate matter in the Banpakong
River Estuary associated with the increasing
relative phytoplankton biomass. Additionally,
good linear correlations were observed between
Chl a¢ and POC, PON and PP in surface
seawater (Fig. 4). In 2004 observation, the high
concentration of Chl a was also observed near
the river mouth (40.1 g Chl a I™). POC and
PON varied from 44.3 to 159 #mol-C 17" and
4.89 to 22.3 pmol-N 17, respectively. PP and
POP ranged from 0.35 to 1.90 gz mol-P 1™ and
2.27 to 1.19 g mol-P 1", while PIP ranged be-
tween 0.14 and 0.70 £ mol-P 17". The percentage
of PIP contributing to PP was between 11%
and 48% with an average of 36%. The same as
the results of the 2002 observation, the distri-
bution of organic particulate matter
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synchronized with the distribution of Chl g;
they obviously increased around the river
mouth (Fig. 3). The Chl a increase around the
river mouth was probably due to the large sup-
ply of inorganic nutrients from riverine runoff
and resulted in an increase of phytoplankton
biomass at the mouth. Good linear correlations
between Chl a and particulate biophilic ele-
ments were also noted in the 2004 observation
(Fig. 5). These results strongly suggested that
the particulate organic matter in the
Bangpakong River predominantly originated
from phytoplankton-derived materials.
Generally, the C : N : P molar ratio is com-
monly used to indicate chemical constituents in
phytoplankton cells and also to provide a better
understanding of the importance of suspended
matter as a food source for suspension feeders
(TANAKA et al., 1998). In the present study, the
stoichiometric ratio of organic suspended mat-
ter was calculated using the slope value of the
linear regression of Chl ¢ and POC, PON and
PP, respectively. We can assume that the slope
in these graphs shows the phytoplankton-
derived organic matter, and that parts vary de-
pending on the Chl a concentration. On the
other hand, we can assume that the y-intercept

value shows the detritus-derived organic mat-
ter and that parts do not vary depending on the
change in Chl @ concentration. The calculated
C ¢ N : P molar ratio of 106 : 17 : 2.2 obtained
from 2002 observation was quite similar to the
average C : N ! P molar ratio in living
phytoplankton cells of 106 : 16 : 1 (REDFIELD et
al., 1963). Nevertheless, the phosphorous con-
tent was 2-fold higher than the Redfield ratio.
There are two possible explanations for this re-
sult. One is that PIP in the suspended matter
can not be ignored and another is that
phytoplankton accumulates phosphorus in
their cells.

As described above, the phosphorus content
in suspended matter was determined separately
into PP and PIP, and POP was calculated as the
difference between PP and PIP in the 2004 ob-
servation. The elemental C : N : P ratio of 106 :
17 0.9 was obtained when POP was employed
to assume the stoichiometric ratio of
phytoplankton-derived organic matter, while
the C : N : P molar ratio of 106 : 17 : 1.5 was
achieved when using PP fraction. This means
that the phosphorus content in suspended mat-
ter was 1.5 times higher than the Redfield ratio
that corresponded well with that we found in



26 La mer 46, 2008

w
PIP (uM)
N w

PIP (M)

y= 35070108 c

PIP (M)

0 $

0 10 30 0 10

20
Salinity

30 0 10 20 30

20 -
Salinity Salinity

Fig. 7. Relationships between salinity and PIP concentration in different zonation ; fresh water (a), mixing

water (b) and saline water (¢) (P<0.05).

our 2002 observation. The results clearly con-

firmed that the PIP in suspended particles in

surface water can not be ignored in the

Bangpakong River Estuary.

3.2  Characterizations of chemical fractiona-
tion of phosphorus suspended matter in
Bangpakong River
PIP has contributed significantly to the PP

pool and can be released into ambient water as

soluble ortho-P (LEBO, 1991; SUZUMURA et al.,

2004; YOSHIMURA et al., 2007). In this study,

the distribution and characteristics of chemical

fractions of phosphorus were also investigated
along the Bangpakong River. The distribution

of the reactive abundance of POP and PP as a

percentage of PP along the river and plot

against salinity are given in Fig.6. The

Bangpakong River was zoned into three sec-

tions, namely freshwater (salinity 0-0.5), mix-

ing water (salinity 0.5-30) and saline water

(salinity >380) by salinity. Generally, the con-

tribution of the PIP fraction was less than that

of POP in freshwater with average PIP ac-
counting for 39% of PP. In mixing water, PIP
increased gradually and was generally higher
than the POP fraction, accounting for 33% to
75% of PP with an average of 56%. Arguably,
the contribution of PIP to PP was mostly lower
than POP in saline water, for PIP contributed
from 11% to 48% to PP. The result suggested
that PIP fractions were produced and have con-
tributed significantly to PP in mixing water
and maintained a low contribution in saline
water. These results also corresponded well
with PIP fraction abundance in the Arakawa

River, Tokyo Bay. SUZUMURA et al. (2004) re-

ported that the relative abundance of PIP as a

percentage of PP varied from 12% to 86% in

the Arakawa River, the PIP concentration was
gradually decreased with increasing salinity,
and an 11% to 75% variation was observed in
this study (Bangpakong River). Fig. 7 clearly
shows the significant correlation between the
PIP fraction and salinity (#*=0.802, P<0.05) in
mixing water. PIP fraction decreased not line-
arly but exponentially. If PIP fraction is di-
luted by saline water which contains a low PIP
content, PIP fraction should decrease linearly
with the increasing salinity. Our result indi-
cates that PIP fraction in mixing water was re-
leased from suspended matter into ambient
water with an increase of salinity, and PIP was
also diluted with saline water with a low PIP
content. A few earlier studies including field
observations and laboratory experiments have
demonstrated that PIP fractions was released
from suspended matter as ortho-P into ambi-
ent water with increasing salinity (LEBO, 1991;
SUZUMURA et al., 2004). The results of the pre-
sent study corresponded closely with those pre-
vious studies, investigating PIP behaviors in
coastal environments.

4. Conclusion

In this study, the suspended matter in sur-
face water was characterized in estuarine
environment, and the distribution and
characteristic of chemical fractions of phospho-
rus was also investigated along the
Bangpakong River. We conclude that (1) the
suspended matter in the Bangpakong River
Estuary primarily originated from
phytoplankton-derived matter; (2) PIP frac-
tion can not be ignored in estuarine water; and
(3) PIP has contributed largely to PP in mix-
ing water (salinity 0.5-30), and was released
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from suspended matter and also diluted with
an increase of salinity.
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Dinophysis (Dinophyceae) in the pelagic waters of
central and western Pacific

0,3

Nguyen Van NGUYEN
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and Yasuwo Fukuyo”

Abstract: Dinophysis species were observed in the pelagic waters of central and western Pacific.
A total of 33 species, including many rare species that have been seldomly seen before, were re-
corded. Two species, D. acutissima and D. balechii, were confirmed for the occurrence for the
first time since their first descriptions. Compared to the original descriptions, specimens found
in the region usually showed some levels of morphological variations. D. doryphorum, D.
hastata, D. parvula and D. schuettii each comprised more than one morphotypes, the
conspecificity of which is uncertain. These uncertainties call for further studies on both mor-

phology and genetics of the genus.

Keywords: Dinophysis, morphology, morphotype, western and central Pacific

1. Introduction

EHRENBERG described the genus Dinophysis
in 1839 with D. acutata as the type species. It
was the only genus of dinophysoids until 1883,
when STEIN introduced several other genera,
including the morphologically closely related
genus Phalacroma. The basic criteria for sepa-
ration of Dinophysis and Phalacroma are the
height of epitheca and the inclination of the
cingular list. Species with low epitheca (which
is not detectable above the cingular list) and
anteriorly—inclined cingular list are classified
as Dinophysis, while those with detectable
epitheca and horizontal cingular list are classi-
fied as Phalacroma. However, since there are
many intermediate species, the delineation be-
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tween the two genera is not clear and the ge-
neric assignments by taxonomists were, as
Korom and SKOGSBERG (1928) stated, “arb-
itrary”. Considering the problem, ABE (1967)
and BALEcH (1967) independently proposed to
merge genus Phalacroma to Dinophysis. There-
after, although there are still sporadically tax-
onomists such as STEIDINGER (1997) and
HALLEGRAEFF (2002) keeping the two genera
separated, this merging is generally accepted
by taxonomists (PARKE and DIXON, 1968;
LARSEN and MOESTRUP, 1992; TAYLOR et al.
2003 e.g.).

So far, more than 200 species of Dinophysis
were reported world wide (SOURNIA, 1968).
Dinophysis are well documented in many parts
of the world such as the Atlantic (STEIN, 1883;
MURRAY and WHITTING, 1899; ScHUTT 1895,
JORGENSEN, 1923 and NORRIS and BERNER,
1970), the Indian Ocean (TAYLOR, 1976). In the
Pacific region, however, studies on this genus
are limited to the eastern waters (KoroIp and
SKOGSBERG 1928) and the neritic western wa-
ters (OKAMURA 1907, 1912; Bonm, 1936; Woob
1954; ABE, 1967). The pelagic waters of central
and western Pacific remain poorly understood.

This study tries to grasp the Dinophysis spe-
cies composition in these poorly known areas.
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2. Materials and methods

The study was based on materials collected
during two cruises of R/V MIRAI, MR0O7-01
and MR07-06, in the Pacific Ocean (Fig. 1) dur-
ing 16" February — 26™ March 2007 and 8"
October — 26™ December 2007, respectively.
Plankton samples (totally 141 samples) were
collected by filtering the seawater, which was
continuously pumped from the ship bottom (at
depth of about 4.5 m) during cruising, through
a plankton net with a mesh size of 20 xm. Live
cells of Dinophysis were microscopically iso-
lated using a capillary pipette before trans-
ferred to a chamber made of a vinyl frame and
glass slide (following HORIGUCHI et al. 2000)
and covered with a coverslip for detailed obser-
vation. Morphological characteristics were ob-
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served under an Olympus BX 60 microscope, at
resolutions of 100 x to 400 x (sometimes 1000
x). Images of live cells were taken using a DP
25 Digital Camera accompanied by DP2-BSW
software (Olympus). Identification of species
was based on original descriptions. In cases
where the original description was unclear or
unavailable, the classification was based on the
earliest taxonomical interpretation of the spe-
cies or based on major taxonomical accounts of
Koroib and SKOGSBERG (1928), JORGENSEN
(1923), ABE (1967) and TAYLOR (1976). Group-
ing of morphological groups was made follow-
ing KoroID and SKOGSBERG (1928)'s definitions.

3. Results
A total of thirty—three species of Dinophysis

Table 1. List of Dinophysis species found in the central and western Pacific during R/V cruises MR07-01 and MR07-06.

Morphological groups and species

Stations where the species was found

Rotundatum group

1. D. lativelata (KoroIb et SKOGSBERG) BaLrch (fig. 2)
2. D. rotundata CLAPAREDE et Lacumany (fig. 3)

3. D. whittingae BaLeca (fig. 4)

4. D. parvula (Scaurr) BaLecn (fig. 5 a-b)

Argus group

5. D. elongata (JorRGENSEN) BaLech (fig. 6 a-b)

. amandula Sournia (fig. 7)

. acutoides Balech (fig. 8)

. argus (SteN) Aga (fig. 9)

9. D. apicata (KoroIp et SKoGSBERG) ABE (fig. 10)
Cuneus group

10. D. cuneus (Scnurt) aBa (fig. 11)

Rapa group

11. D. rapa (SteiN) Bavecn (fig. 12)

12. D. mitra (Scuurr) ABE (fig. 13)

13. D. favus (Korom et MicHENER) ABE (fig. 14)

14. D. hindmarchii (Murray et WrrrTiNG) BaLecn (fig. 15)
Doryphorum group

15. D. ¢f. cuneolus (Koroip et SKkoGsBERG) BaLech (fig. 16)
16. D. cf. pugiunculus (JorceENsEN) Barech (fig. 17)
17. D. doryphorum (SteiN) Barkch (fig. 18)

18. D. acutissima Gaarper (fig. 19)

Hastata group

o N>
Soo

130

6,15,60,62,68,70,75,77,78,82,126,128, 130,142
54,56,50,60,62,69,70,75,77,78,82,84,128,130
12,217,29 30,32,33 38,40,85,84,86

86,138
5,15,16,17,20,24,35,40,77,82,90,91,96,105,124,126,130
27,38

35,40,136

15,17,18,24,35,38,53,91,92

17,24,33,36,53,91,92,102,104,126 127,130,137

15,16,17,19,20,24,27,30,89,92,96,97,99
15,16,60,62,91,92,93,96,97,99,105,124,126,134,141
18,20

95,99,126,135,136

95

130,137
4,7,16,17,18,20,24,38,88,89,91,92,93,102,120,124,130,134,136,141
86

19. D. hastata SteIN sensu lato Koroip et Skoassera (fig. 20a-¢)7,22,23,24,30,34,35,40,96,99,100,102,105,116,122,124,128,130,131,133,137

20. D. schuettii MURRAY et WHITTING (fig. 21 a-b)
21. D. pusilla Jorcensen (fig. 22 a-b)

22. D. balechii Norrrs et BErngr (fig. 23 a-b)
Acuta group

23. D. exigua Koroip et SkosserG (fig. 24)

24. D. infundibulus SchiLLER sensu Agg (fig. 25)
25. D. similis Koroib et SkoGsBerG (fig. 26)

26. D. norvegica CLAPAREDE et Laciavann (fig. 27a-b)
27. D. recurva Koroip et SkoasserG (fig. 28)

28. D. ¢f. ovum Scuurt (fig. 29)

29. D. fortii PaviLLarp (fig. 30)

30. D. schroederi PaviLLarD (fig. 31)

Caudata group

31. D. caudata SaviLLe-Kent (fig. 32)

32. D. tripos Gourrer (fig. 33)

Expulsa group

33. D. expulsa Korowp et Micuengr (fig. 34)

6,16,17,18,24,38,92,100,102,126,128,130
40,96,130,136
20,85,86,126,128

20,34,35,89,40

69,77
17,25,30,40,90,91,100,114,130
69,70,71,72,74,75,76,77,78,81,82
40,69,70,71,72,73,74,75,76,77,82
88

5, 69,87,88,91
40,41,43,44,45,50,53,62,88,133,141

38,43,45,50,51,53,54,60,61,62,63
45,50,53,54,56,60,62,69,82,83,84,85,86,92,108

10,90,93,121
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Figs. 2-11. Dinophysis of the rotundata, argus and cuneus groups. 2-5 : the rotundata group. 2. D. lativelata,
3. D. rotundata, 4. D. whittingae, 5. D. parvula. 6-10 : the argus group. 6. D. elongata, 7. D.
amandula. 8. D. acutoides, 9 - D. argus, 10- D. apicata. 11 : the cuneus group : 11. D. cuneus. Scale
bar is applied for all figures.

belonging to nine morphological groups were
recorded (table 1). Images of live-specimen of
these species are shown in Figures 2-34. Among
them, fifteen species were widely distributed
(recorded in more than ten stations — see table
1); nine species had very limited distribution
(found in only one or two stations); and the
rest nine species were moderately distributed
(found in three to ten stations). Particularly,
the two species, D. cf. cuneolus (Fig. 15) and D.
acutissima (Fig. 19) were so rare that, for each

species, we were able to find only one cell dur-
ing the two cruises.

In addition to these thirty-three species, we
also encountered some new species. Descrip-
tions of these species are being prepared.

In terms of morphology, most of Dinophysis
species found in the region showed some levels
of variation from their type description. Four
species, D. doryphorum (Fig. 18), D. hastata
(Fig. 20), D. parvula (Fig. 5) and D. schuettii
(Fig. 21), each showed several morphotypes,
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Figs. 12-19. Dinophysis of the rapa and doryphorum groups. 12-15 : rapa group. 12. D. rapa, 13. D. mitra, 14.
D. favus, 15. D. hindmarchii. 16-19 : doryphorum group. 16. D. c¢f. cuneolus, 17- D. ¢f. pugiunculus,
18- D. doryphorum, 19- D. acutissima. Scale bar is applied for all figures.

Figs. 20-23. Dinophysis of the hastata group. 20. D. hastata, 21. D. schuettii, 22. D. pusilla, 23. D. balechii.
Scale bar is applied for all figures.
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Figs. 24-34. Dinophysis of the acuta, caudata and expulsa groups. 24-31 : the acuta group. 24. Dinophysis
extgua, 25. D. infundibulus, 26. D. similis, 27. D. norvegica, 28. D. recurva, 29. D. ovum, 30. D.
fortii, 31. D. schroederi. 32-33 . the caudata group. 32. D. caudata, 33. D. tripos. 34 . the expulsa
group. 34 . D. expulsa. Scale bar is applied for all figures.

some of which may not be conspecific. These
morphotypes are being subjected to further
morphological ~and  molecular  analysis
(NGUYEN et al., in preparation).

4. Discussion

Prior to this study, there have been only few
studies on Dinophysis in the central and west-
ern Pacific, although numerous studies on
phytoplankton have been carried out in the re-
gion (see HASEL (1960) for the list). Except

four species, D. hastata, D. schuettii, D. similis
(Fig. 26), and D. caudata (Fig. 32), which have
been reported from the tropical water of middle
Pacific by Rampr (1952) and SCHRODER (1906),
the rest twenty—nine species are new records
for the region.

Most of these Dinophysis species (thirty out
of thirty—three species), however, have been
previously reported elsewhere in Pacific Ocean,
either in the pelagic eastern Pacific (Korop
and SKOGSBERG, 1928) or the neretic waters of
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Australia (Woobp, 1954), Japan (OKAMURA
1907, 1912 and ABE, 1967) and South China Sea
(Bomnm, 1936).

Three species, D. acutissima, D. balechii (Fig.
23) and D. pussila (Fig. 22), were for the first
time recorded in the Pacific Ocean. Particu-
larly, for D. acutissima and D. balechii, this is
the first confirmation of their existence since
their first descriptions were made by GAARDER

(1954) and NoRrIs and BERNER (1970), respec-
tively.

It should be noted that three species D.
recurva, D. whittingae and D. amandula are
frequently documented under invalid names D.
lenticula, D. rudgei and D. ovum, respectively
in some papers such as ABE (1967), GARATE —
LIZARRAGA et al. (2007).

The first species, D. recurva, was first de-
scribed by Pavillard (1916) under the name D.
lenticula. KoroID and SKOGSBERG (1928) (page
228) renamed it as D. recurva since they recog-
nized that the name D. lenticula had been pre-
occupied. ABE (1967) wused the name D.
lenticula to refer this species, perhaps, because
of overlooking KoroID and SKOGSBERG® S argu-
ment.

The second species, D. whittingae, was
named by BaLecH (1967) for the senior syno-
nym Phalacroma rudget when he merged the
genus Phalacroma to Dinophysis. In the same
year, ABE (1967) made the same merging but
this author used the name D. rudgei for P.
rudget without recognizing that the name D.
rudger had been previously reserved for an-
other species by MURRAY and WHITTING
(1899).

The third species, D. amandula, passed a
complicated history of systematic. It was origi-
nally described by ScHUTT (1895) under the
name Phalacroma ovum (In his figure (figure
112, plate 2), however, it was noted by the
name P. operculoides; but this was a mistake —
see KOFOID & SKOGSBERG, 1928, page 121 for ex-
planation). When merging genus Phalacroma
to Dinophysis, BALECH (1967) renamed it as D.
amygdala because the name D. ovum was pre-
occupied (D. ovum ScHUTT, 1895). Later, how-
ever, SOURNIA (1973) found that D. amygdala
was invalid because it was a homonym for D.
amygdalus, a species raised by PAULSEN (1949).

SOURNIA therefore again renamed it as D.
amandula.
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Diurnal Tidal Current on the Eastern Shelf of Hidaka Bay
—Can juvenile walleye pollock, Theragra chalcogramma,
move southeastward with the diurnal tidal current?—

Hiroshi Kuropa”, Yutaka Isopa”, Satoshi HoNDA?,
Hidetaka TAKEOKA" and Manabu SHiMIzU"

Abstract: It has been reported that juvenile walleye pollock (age 0) moves southeastward along
the eastern shelf of Hidaka Bay, Japan, in the early summer, when the mean flow direction on
this shelf is opposite to its movement, i.e., northwestward flow. A hypothesis was previously
proposed that the juvenile can move against the mean flow by combining an active diurnal ver-
tical migration with background diurnal tidal currents. A strong vertical shear of the diurnal
tidal current is essential for this hypothesis, but the presence has not been clarified. In order
to describe characteristics of the diurnal tidal current on the eastern shelf of Hidaka Bay and
to argue the validity of this hypothesis, we conducted a mooring current measurement from
December 2002 to July 2003 and one-shot/25.8-hour ADCP surveys in the early summer (June)
of 2003. It is shown that the O; current is by far the largest of the four major tidal constituents,
followed by the K, current. This magnitude relation is inconsistent with that of the tidal height
amplitude, M,>K,>0O; >S.,. The spatial structure of the O; current from the ADCP survey is
compared with that from free coastal-trapped wave (CTW) dynamics. As a result, it is indi-
cated that the O; tidal height and current are mainly governed by a basin-scale external gravity
wave and a first-mode baroclinic CTW with about 100-km wavelength, respectively. The O; cur-
rent related to the CTW exhibits a nearly barotropic structure on the shelf without a strong
vertical shear, independent of the seasonal stratification. Consequently, it is concluded that the
proposed hypothesis must be quantitatively invalid.

Keywords: Hidaka Bay, K, and O; current, CTW, Theragra chalcogramma

1. Introduction

Hidaka Bay is an open-type bay with U-
shaped topography, west of Cape Erimo, in the
North Pacific (Fig. 1. In this study the north-
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eastern part of the shelf region of this bay with
a straight coastline of 120 km is simply re-
ferred to as the eastern shelf. It has been well-
known that tidal height fluctuations around
this bay are mainly governed by basin-scale ex-
ternal gravity/Kelvin waves from the North
Pacific which propagate southwestward along
Kuril and Japan Islands (OGURA, 1933). It has
been considered that there are spatial differ-
ences in characteristics of tidal currents around
Hidaka Bay due to topographic effects of
Funka Bay (SAKATA and ISoDa, 1998) and tidal
waves propagating from the dJapan Sea
through Tsugaru Strait (ODAMAKI, 1984;
KURODA et al., 2004). However, the focus of
these previous studies is limited to steady-state
tidal currents on the western part of Hidaka
Bay. Thereby, it is required to understand
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Fig. 1. Bathymetry in and around Hidaka Bay. Star mark, open square and open circle in lower panel denote lo-
cations of mooring current site, tide gauge at Urakawa, and CTD stations of P4-P6, respectively. Thick lines
along L1 and L2 are transects of 25.8-hour ADCP surveys.

characteristics of the tidal currents on the east-
ern shelf without neglecting the unsteadiness.
In addition, recently, understanding the prop-
erties of the diurnal tidal current on this shelf
has become an important issue in fisheries sci-
ence for the following reason.

Fig. 2 (a) illustrates the schematic view of
the early life history of walleye pollock
(Theragra chalcogramma) hatching in winter
around the mouth of Funka Bay, the main

spawning ground of the Japanese Pacific popu-
lation of this species (e.g., NISHIMURA et al.,
2002). Although a part of larvae and juveniles
are transported southward away from the
mouth of Funka Bay, the rest of them remains
in Funka Bay until May. It has been observed
that the juveniles begin to move southeastward
on the eastern shelf with water depths less
than 100 m at the beginning of summer (June),
when they grow to about 50-100 mm in total
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Fig. 2. (a) Early life history of walleye pollock hatching in winter around the mouth of Funka Bay (from
Honpa et al., 2004). (b) Schematic view of the DM hypothesis under the two-layer configuration.

length (HoNDA et al., 2004). However, the
mean current direction on the shelf in this sea-
son 1s opposite to their movement, i.e., north-
westward flow (KURODA et al., 2006; RosA et
al., 2007).

This inconsistency was discussed in sympo-
sium on Japanese Coastal Oceanography, Sap-
poro, October 2002 (HoxDA et al., 2003). The
horizontal swim capability of juvenile pollock
was neglected at the symposium because it was
unclear. A hypothesis was proposed that juve-
nile pollock can move against the mean flow by
combining an active diurnal vertical migration
with background diurnal tidal currents (Fig. 2
(b)), as well as plaice, sole, flounder and
shrimp larvae (RIJNSDORP et al., 1985; GRIOCHE
et al., 2000; CATTRIJSSE et al., 1997; GIBSON,
2003; McKrowN, 1984). In the present study,

we refer to this hypothesis as “DM hypothe-
sis”. In this hypothesis, juvenile pollock mi-
grates vertically on a diurnal cycle as synchro-
nizing its vertical position with a strong
southeastward or a weak northwestward tidal
flow (Fig. 2 (b)). A strong vertical shear of the
diurnal tidal current associated with bottom
friction or internal wave is crucial for the DM
hypothesis. However, as mentioned above, the
dominance of the diurnal tidal current and the
presence of the strong vertical shear have not
been understood.

The purpose of this study is twofold: firstly,
to describe characteristics of the diurnal tidal
current on the eastern shelf on the basis of ob-
servation data, and secondly, to discuss the va-
lidity of the DM hypothesis. On the eastern
shelf of Hidaka Bay, we carried out a mooring



40 La mer 46, 2008

current measurement for about 8 months and
one-shot/25.8-hour ADCP surveys in the early
summer of 2003 (Section 2). Several interesting
features of the diurnal tidal current are de-
tected, which cannot be identified in the west-
ern part of Hidaka Bay, e.g., dominance of the
O: current and high temporal variability of
harmonic constant of the K, and O, current
(Section 3). Spatial structures of the O, current
from the one-shot ADCP survey are compared
with those from free coastal-trapped wave dy-
namics (Section 4) , and the validity of the DM
hypothesis is discussed from observational and
theoretical results (Section 5). Lastly, several
findings from this study are briefly summa-
rized (Section 6).

2. Data and data processing

A mooring current measurement was per-
formed near the coast on the eastern shelf of
Hidaka Bay from 20 November 2002 to 26 July
2003 (Fig. 1). An electromagnetic current me-
ter (“compact-EM”, Alec Electronics Co., Ltd)
was moored at 7 m below the sea surface. This
mooring site is about 3 km offshore from the
coast, and the water depth is 35 m. The current
velocity and direction, averaged over 30 sec.,
were recorded every two hours. The accuracy of
this current meter is 1 cm s,

Hourly tide gauge data at Urakawa during
the same period of the mooring current meas-
urement were collected from the Japan Oceano-
graphic Data Center (JODC). The sea level
data was subsampled every 2 hours to match
the sampling time of the current data.

Across-shelf ADCP transects along L1 and
L2 (Fig. 1) were repeated back and forth for
25.8 hours on 17 and 16 June 2003, respectively,
using the R/V Kaiyo-maru No.7. CTD and X
CTD observations were carried out before the
ADCP measurements. The transit times be-
tween the end points of each transect repetition
are about 1.5 hours. The ADCP (“CI-30” (130
kHz), Furuno Electric Co., Ltd) was set to
sample 3 vertical levels (17, 42 and 67 m). The
bottom track-mode current velocity and direc-
tion were recorded every 15 seconds. The meas-
urement accuracy of this system is 0.1 kt.
(~5.0 ecm s ). The original ADCP data were
separated into several stations on L1 and L2,

and averaged for each transect.

For a theoretical calculation in Section 4, a
density profile of 0-1000 m on the eastern shelf
in June 2003 was prepared by merging CTD
and XCTD data. All the CTD and XCTD pro-
files measured on L1 and L2 were averaged for
each depth. However, the maximum depth of
the mean density profile is limited to about 500
m. To extrapolate a density profile at depths
greater than 500 m, we used 1-m pitch CTD
data at three stations of P4-P6 (Fig. 1), ob-
tained on 2 May 2003 by the Japan Meteoro-
logical Agency (JMA). The density profiles at
500-1000 m were averaged over P4-P6 for each
depth, and then combined with the mean den-
sity profile of 0-500 m from L1 and L2.

3. Characteristics of observed tidal current
3.1. Mooring current measurement

Using the mooring current and tide gauge
data during the entire mooring period, har-
monic analysis for the four major tidal con-
stituents (K, O,, M, and S;) was conducted.
The current ellipses are shown in Fig. 3, and
the harmonic constants are listed in Table 1. It
is found that the O, current is by far the most
dominant, the major-axis amplitude of which is

® clockwise 5 cm/s

O anticlockwise

north

1.

east

K

g ®

Fig. 3. Current ellipses of the four major tidal con-
stituents, estimated from the entire mooring pe-
riod from December 2002 to July 2003. Phase is
denoted by straight line connecting each elliptic
curve with its center, and the rotational direction
of all tidal constituents is clockwise, as repre-
sented by closed circle.
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4.5 cm s '. The O, current oscillates clockwisely
and rectilinearly along the northwest-south-
east coastline. On the other hand, the major-
axis amplitude of another constituent is less
than the current meter accuracy of 1 ecm s™'.
The major-axis directions of the M, and S; cur-
rent are not parallel to the coastline and the
shapes of M. and S: current ellipse are clearly
different regardless of their similar periods,
implying that the semi-diurnal current signals
are contaminated by a non-tidal noise compo-
nent.

Compared with MSA (1983), the harmonic
constants of tidal height at Urakawa (Table 1)
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Fig. 4. Temporal variations of (a) amplitude and (b)
phase for northwest component of the K; and O;
current. Vertical straight line indicates the time
of 17 June 2003, around which ADCP and CTD
observations were conducted on L1 and L2.

are almost consistent with those along the Pa-
cific coast of Hokkaido (not shown) since the
tidal height fluctuations along the coast are
mainly governed by basin-scale external grav-
ity /Kelvin waves (OGURA, 1933). The magni-
tude relation of the tidal height amplitude (M,
>K, >0, >8S,) is clearly different from that of
the tidal current amplitude (O, > >K,~M,~
S.). This suggests that a non-divergent wave,
such as Rossby and internal wave, contributes
to the O, current on the eastern shelf of Hidaka
Bay.

To examine the temporal variability of har-
monic constant of the K, and O, current, the
original current time series was divided into
subseries with a length of 15 days. Harmonic
analysis for the four major tidal constituents
was sequentially conducted for each subseries.
Fig. 4 shows the time series of diurnal ampli-
tude and phase for the northwest velocity com-
ponent. The amplitude of the K, (O,) current
varies dramatically with time from 0.4 to 7.3
ems ' (from 2.6 to 8.6 cm s ") (Fig. 4 (a)). The
amplitude of the O; current exceeds that of the
Ki current, except for two cases in December
and February. The K, and O, current phases
also vary drastically (Fig. 4 (b)) and, the vari-
ability of the K, phase seems higher. It is in-
ferred that the extremely small amplitude of
the K, current of 0.7 cm s™' from the about 8-
month data (Fig. 3) is partly attributed to this
higher variability of the K; phase. The M. and
S, current amplitudes also change between 0.5
and 1.5 ecm s ' (not shown), close to the current
meter accuracy of 1 cm s~

To check the influence of the P; current on
the seasonal variability of the K, current (Fig.
4), a harmonic analysis for the K;, Oi, M;, S;
and P; constituents was sequentially applied to
the 15-day subseries under the assumption of a

Table 1. Harmonic constants of tidal height at Urakawa and tidal current at the mooring site estimated from

time series from December 2002 to July 2003.

Mz SZ I'{1 Ol

. Major-axis direction (degrees) 1 8 296 314
g;iilricn‘”ﬁ;g Major-axis amplitude (cm/s) 0.5 0.4 0.7 45
g Major-axis phase (degrees) 350 33 328 217

Tidal Level amplitude (cm) 29.9 12.9 26.4 21.7
(Urakawa) phase (degrees) 107.3 149.2 167.6 152.4
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Fig. 5. Diurnal current ellipses from ADCP surveys in June 16th (I.2) and 17th (L.1) 2003. Location of ADCP
stations is consistent with the center position of current ellipses at 17 m, in the right position of which cur-
rent ellipses at 42 m and 67 m are plotted.

Table 2. Diurnal current phases for the major-axis component from 25.8-hour ADCP survey and 26-hour moor-
ing current record. Numeral in parenthesis indicates the phase difference from a mean phase on each
transect. Reference time of phase is 2000/1/1 00 : 00 : 00JST.

Tm 17m 42m 67m

Li1-1 — 127.6 (—18.5) - -

L1-2 — 139.6 (—6.5)  134.0 (—12.1) -

A%gg /é%?) L13 - 1704 ( 24.3) 1565 ( 10.4) -
L1-4 — 164.0 ( 17.9)  160.3 ( 14.2)  133.2 (—12.9)

L1-5 - 1447 (—1.4) 1304 (—15.7) -

Lo-1 — 37.6 (—17.5) 433 (—1.8) -

AZ%(&; /é}fg L2-2 — 658 ( 20.7) 487 ( 3.6) 387 (—6.4)

1.2-3 - 623 ( 17.2) 335 (—116)  30.7 (—14.4)

. Mooring 2003,/6,/16 31.6 — - -

mooring Mooring 2003,/6/17 59.6 — - -

constant amplitude ratio (0.326) and phase dif-
ference (357.3 degrees) between the K, and P,
constituents (ODAMAKI, 1989), based on the
harmonic constant of the tidal height at
Urakawa (Msa, 1983). It was found that the
maximum difference of amplitude and phase
from Fig. 4is 1.7 cm s ' and 19 degrees, respec-
tively, but the time variation pattern is similar
to that of Fig. 4. It is suggested that the influ-
ence of the P; current is negligible for the sea-
sonal variability of the K, current.

Here, we focus on the K, and O, current am-
plitudes plotted at 16 June 2003 in Fig. 4 (a),
when the 25.8-hour ADCP surveys were per-
formed. It is found that the K, current

phase reference :

2000/01/01 00 : 00 : 00JST

amplitude (0.42 cm s ') is much smaller than
the O, current amplitude (6.9 cm s ). These di-
urnal amplitudes were computed from a
subseries between 9 June and 24 June under the
assumption of constant amplitude and phase
for the 15 days. If this assumption is valid, at
least, for this subseries, the diurnal current
captured by the ADCP surveys depends pri-
marily on the O, current.

3.2. 25.8-hour ADCP measurement

Using not only the 25.8-hour ADCP data
along L1 and L2 but also the mooring current
data for 26 hours corresponding to each ADCP-
observation period, the diurnal, semi-diurnal
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and residual components were decomposed by
harmonic analysis (e.g., CACERES et al., 2002).
The residual northwestward flow, nearly
barotropic, was described in KURODA et al.
(2006). The diurnal current ellipses and major-
axis phases based on 1 January 2000 00:00:00
JST (not the same as the lag of tide in Table 1
and Figs. 3,4 (b)) are shown in Fig. 5 and listed
in Table 2, respectively. In Fig. 5, the center po-
sition of the current ellipses at 17 m on L1 and
L2 corresponds to the actual position of ADCP
stations, and the upper two ellipses surrounded
by a solid square are from the 26-hour mooring
current record.

The major-axis direction of the current el-
lipse tends to be parallel to the coastline. Clock-
wise rotations are dominant except for at 17 m
on L2. Major-axis amplitudes from the ADCP
survey are in a range of 4 cms 'to 11 ecm s ',
comparable to the major-axis amplitude of
about 9 em s ' from the 26-hour mooring cur-
rent data. In this regard, however, it should be
noted that quantitatively accurate discussion
for the diurnal current estimated from the
ADCP survey may be difficult because of the
ADCP system accuracy of about 5 cm s™.

The major-axis amplitude based on the 26-
hour mooring current record (9.0 cm s (Fig.
5) is closer to the O, current amplitude (6.9cm
s ) at 16 June 2003 in Fig. 4 (a) than the K,
current amplitude (0.42 cm s™'). Here we as-
sume that the diurnal current in Fig. 5 is the O,
current. Under this assumption, the phase
listed in Table 2 can be converted to the lag of
the O, tide, the same as in Table 1 and Figs. 3,4
(b), by adding 154.18 degrees. The converted
phases for the 26-hour mooring data and
ADCP data on L2 are in a range of 184.9 to 220
degrees, almost consistent with the O; phase of
210 degrees plotted at 16 June 2003 in Fig. 4
(b). Accordingly, it is indicated that the diur-
nal current recorded by the ADCP survey
mainly depends on the O, current.

Numerals in parenthesis of Table 2 are phase
deviations from a mean value on each transect.
The phase deviations for L1 and L2 are in a
range of —18.5 to 24.3 degrees and —14.4 to
20.7 degrees, respectively. This indicates that
the diurnal current is in phase for the vertical
and across-shelf direction within an error

range of £25 degrees. A systematic phase dif-
ference is detected between L1 and L2 (Table 2).
The current phase on L2 remarkably leads that
on L1, indicating that a tidal wave related to
the observed diurnal current propagates north-
westward. The major-axis current phases aver-
aged over L1 and L2 are 146.1 and 45.1 degrees,
respectively. That is, the mean phase lag (L1
minus L2) is 101 degrees. A wavelength of 107
km is estimated from the mean phase lag and
distance of 30 km between L1 and L2, if the
wavelength is longer than the 30 km. This
wavelength is much smaller than the spatial
scale (O(10'km)) of the external gravity
waves, governing tidal height fluctuations, by
two orders of magnitude.

Since the O: frequency is subinertial at the
mooring site on the shelf near the coast, one
possible interpretation for the wave character-
istics captured by the ADCP survey is that the
dominant O; current is controlled mainly by
coastal-trapped waves (CTWs). The CTWs
generally exhibit a 100-km order of wavelength
and weak divergence (e.g., WANG and MOORES,
1976), which seem to be able to explain our ob-
servational results. To confirm this possibility,
the free CTWs’ properties are theoretically in-
vestigated in the next section.

4. Free coastal-trapped wave dynamics

The dispersion curve and mode structure of
free baroclinic CTWs are computed under a
given density stratification and topographic
condition. A set of linearized, inviscosity, and f-
plane equations are solved by using a numeri-
cal technique in WANG and MOOREs (1976),
DALE and SHERWIN (1996), and ZOAKOS et al.
(2004). An idealized configuration is designed
in the Cartesian coordinate of (x, y, z). A
straight coastline along the y-axis direction is
assumed at x=0. The positive directions of x, y
and z are defined as the offshore direction, the
direction toward which Kelvin waves propa-
gate, and the upward direction, respectively.
Two input variables required for this model are
the bottom topography A (x) and Brunt-Viis
4ld frequency N (z), which are the functions of
x and z alone, respectively.

The main solved equation is
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Fig. 6. Brunt-Viisdld frequency based on density
profile processed in Section 2 (left panel) and
bottom topography along LA seen in Fig. 1
(right panel).

{pxﬁ bt (L) + (L2 LJ, = 0.1)

where subscript denotes the partial differen-
tial, p is the pressure perturbation, and fis the
Coriolis parameter. The boundary conditions
at the sea surface, sea bottom, coast, and infi-
nite offshore are
p«+Ng 'p.=0at z=0, (2)
fpzc+p1u+Nzhx (pxﬂffpy) =0atz=—nh (X), (3)
Dt fo, =0 at x=0, (4)
and
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Fig. 7. Dispersion curves of the first-mode to third-
mode CTWs.

p—>0 at x>0, (5)

respectively. Equations (2), (3), (4) and (5)
represent the free sea surface, no normal flows
to the sea bottom and coast, and coastal trap-
ping, respectively.

Equations (1) to (5) in the z coordinate are
converted to those in the o coordinate. The fol-
lowing wave solution is substituted into Egs.

(1) to (5),
p (JC, v, 0') :ﬁ (x, O-)ei(wuzy)’

where w and [ are the angular frequency and
alongshore wavenumber, respectively. This
wave form is almost consistent with the obser-
vation, i.e., the O, current is in phase for the
vertical and across-shelf direction within an er-
ror range of +25 degrees (Table 2). One-km
horizontal grid, evenly spaced 75-sigma levels,
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Fig. 8. Vertical sections of (a) alongshore velocity normalized by the maximum value at the coast and (b) cur-
rent ellipse on the shelf, for the first-mode CTW with the O, frequency.
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and the Coriolis parameter at 42 (=9.73X10°
s ) are adapted. The bottom topography along
LA (see Fig. 1) and Brunt-Viisild frequency
based on the density profile processed in Sec-
tion 2, shown in Fig. 6, are given for the calcu-
lation. A set of equations of p are solved by
using a resonance response.

Fig. 7 shows dispersion curves of the first-
mode to third-mode CTWs. It is found that the
CTWs can be permitted at both the K; and O,
frequencies. The wavelengths of first- to third-
mode CTW for the O, frequency are 92 km, 42
km and 30 km, respectively. The first-mode
wavelength is closest to the wavelength of 107
km estimated from the ADCP survey.

Fig. 8 (a) shows the vertical section of the
normalized alongshore velocity for the first-
mode CTW with the O, frequency. The node (0-
value curve) extends along the depth of 300 m
from the sea bottom just offshore the shelf
edge. This indicates that the alongshore veloc-
ity is vertically in phase on the shelf and out of
phase on the slope. To focus on current struc-
tures near the coast, the O, current ellipses on
the shelf derived from the first-mode CTWs are
shown in Fig. 8 (b). The O: current seems
nearly barotropic on the shelf. Compared be-
tween Fig. 5 and Fig. 8 (b), the theoretical and
observed ellipses are not quantitatively consis-
tent with each other because of the ADCP sys-
tem accuracy and some idealizations of the
theoretical model, but several features are
qualitatively consistent. The clockwise rotation
is dominant on the shelf in the theoretical re-
sult (Fig. 8 (b)) as well as the observed result
(Fig. 5). In Fig. 8 (b), the current ellipse near
the coast is rectilinear and parallel to the coast-
line, and the ellipses around the depth of 17 m
gradually approach a circular shape toward the
offshore direction. This across-shelf feature is
especially notable at 17 m along L1 (Fig. 5).
Moreover, for the first-mode CTW with the O,
frequency, the theoretical ratio of the
alongshore current amplitude to the sea-level
amplitude at the coast is estimated as 10 s™'.
This value indicates that the CTW is weakly di-
vergent, as expected from Table 1. Conse-
quently, it is concluded that the O; current
observed in June 2003 is mainly governed by
the first-mode baroclinic CTW.

5. Discussion

In this section we discuss the validity of the
DM hypothesis under the two-layer configura-
tion (Fig. 2 (b)) for the shelf with water
depths less than 100 m, where juvenile pollock
was in fact detected during our survey of L1
and L2 (HonNDA, personal communication).
Moreover, the tidal current selectivity to opti-
mally move southeastward is explicitly given
for juvenile pollock although the purpose of the
juvenile migration may be to prey on
zooplankton migrating vertically on day-and-
night cycle (HONDA et al., 2004).

Upper- and lower-layer diurnal tidal cur-
rents are assumed to be either in phase or out
of phase. The amplitudes of southeast velocity
component in the upper and lower layer are
given as U, (>0) and U, respectively (U,>0
(U»<0) means that the upper and lower cur-
rents are in phase (out of phase)). Under the
assumption of the tidal current selectivity, ju-
venile pollock stays in the upper (lower) layer
when the upper layer exhibits the southeast-
ward (northwestward) flow. In this case the
southeastward moving speed of juvenile pollock
averaged over a diurnal cycle is

/w 27/w
2“;[{ Usinwt di+ [ Usinwt dt}

7/w

= (Ul*UE)/ﬂ',

where ® is the diurnal angular frequency.
Moreover, since a northwestward mean flow
(Unean (<0)), nearly barotropic, was observed
on the eastern shelf in the early summer of
2003 (KUroDA et al., 2006), the above moving
speed is modified as (Ui~ U,) /7 + Unean. The
southeastward movement of the juvenile is fea-
sible for (Ui,—U,) / 7 + Unean>0. The actual val-
ues of U; and U, are approximately 8 cm s
(Fig. 5) and —7.5 cm s !, respectively (the lat-
ter is the alongshore velocity of the mooring
current data averaged over June and July
2003). The relation of U,< —16 cm s ' is de-
rived, indicating that the strong shear flow out
of phase between the upper and lower layer is
required for the DM hypothesis.

However, as mentioned above, such an in-
tense vertical shear was not observed and theo-
retically supported (Figs. 5,8). The strong
shear should not be also theoretically explain-
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able even if the bottom friction is added to the
free CTW dynamics. This is because the diurnal
time scale is too short for the friction to
efficiently reduce/modify an alongshore
barotropic current on the shelf (CHAPMAN and
BRINK, 1987). As a result, it is concluded that
the DM hypothesis must be quantitatively in-
valid.

Moreover, this conclusion implies that juve-
nile pollock can actively swim horizontally/
southeastward against the mean flow. For the
mean flow of the —7.5 cm s™' near the coast
(Unen), if the juvenile is able to swim with a
mean speed of 12 cm s7', it can move from the
mouth of Funka Bay to Cape Erimo (120km) in
a month. The swim speed of 12 cm s ' may be
reasonable according to a recent experiment of
Hurst (2007), which reported that the routine
and maximum swim speeds of an 80 mm juve-
nile walleye pollock are in a range of 6 cm s™' to
8 cm s and of 22 ecm s to 31 cm s, respec-
tively.

6. Conclusions

To describe characteristics of the diurnal
tidal current on the eastern shelf of Hidaka
Bay and argue the validity of the DM hypothe-
sis, we carried out a mooring current measure-
ment from December 2002 to July 2003 and one-
shot/25.8-hour ADCP surveys in June 2003. It
was shown that the O; current is by far the
largest of the four major tidal constituents,
whereas the O; tidal height is the third largest.
The harmonic constant of the K; and O, current
changes dramatically with time. The spatial
structure of the O, current from the ADCP sur-
vey was compared with that estimated from
the free CTW dynamics. As a result, it was in-
dicated that the O; tidal height and current on
this shelf are mainly governed by a basin-scale
external gravity /Kelvin wave and a first-mode
baroclinic CTW, respectively. The O; current
depending on the CTWs showed the nearly
barotropic structure on the shelf without a
strong vertical shear, independent of the sea-
sonal density stratification. Therefore, the DM
hypothesis must be invalid, implying that juve-
nile pollock is able to actively swim southeast-
ward against the mean flow. This may also be
supported by recent swim experiments

performed by Hurst (2007).

Lastly, we remark a few dynamical issues
which require clarification in future work. Two
observed features in Fig. 4 seem very intrigu-
ing; one is the amplitude difference between the
Kiand O currents, the other is the high tempo-
ral variability of the harmonic constant (i.e.,
amplitude and phase) of the K, and O, currents.
In particular, for the latter point, many possi-
ble causes can be supposed, such as temporal
changes of CTWs’ generation, propagation,
scattering, and damping process due to the
change of density stratification (e.g.,
WILKIN and CHAPMAN, 1990; BRINK, 2006).
However, since the present study is based on
only one mooring current measurement and
one-shot ADCP surveys restricted to June
2003, it is not possible to comprehend a spatial
structure of the K; and O tidal currents over
the eastern shelf throughout the entire of the
mooring period. Hence, to clarify these issues,
as one of the subsequent steps, it is probably ef-
fective to examine temporal and spatial varia-
tion of the diurnal CTWs on the eastern shelf
by deploying plural mooring current meters.
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How do fishes utilize tidal pools on the mudflat?

Kazuyoshi UcHIDA, Toshihiro Yok00, Hiroshi Konno AND Kouki KANOU

Abstract : Fishes occurring at small tidal pools (n = 48, 0.4—14.4 m*) were examined in the pe-
riod from April to July 2007 at three sites on the tidal mudflat in the Tama River estuary, cen-
tral Honshu, Japan. A total of 1,454 individuals represented by eight species belonging to the
family gobiidae were collected with the dominant species of Pseudogobius masago,
Acanthogobius flavimanus and Gymnogobius macrognathos. Among the three dominant spe-
cies, P. masago was solely represented by juvenile to adult stages, although the juvenile and
young specimens were collected in the other two species. These gobies collected at tidal pools
were not pelagic but benthic stages. Pseudogobius masago and A. flavimanus occurred mainly
at the upper- and middle-reach sampling sites, although most individuals of G. macrognathos

were collected at the lower-reach one.

Keywords : Tama River estuary, tidal flat, tide pool, fish fauna, Gobiidae
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Fig. 1. Map showmg the sampling sites (A-C) on the
tidal mudflat in the Tama River estuary, central
Japan. Shaded area indicate intertidal flats.
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Fig. 2. Water temperature and salinity at the tidal
pools on the mudflat in the the Tama River estu-
ary from April to July 2007. Error bars indicate
standard deviation.
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Table1. Fishescollected at the tidal pools on the tidal mudflat in the Tama River estuary from April to July 2007

Species No. of Size range  Developmental — Sampling Occurrence
individuals (SL, mm) stages sites months

Acanthogobius flavimanus 546 12.2-46.8 J-Y A,B,C 4-7

A. lactipes 1 04.7 A A b)
Gymogobius breunigii 2 29.2-35.5 Y C 6

G. macrognathos 238 17.8-28.0 J-Y A B,C 56
Luciogobius spp. 13 11.6-57.4 J-A B 4-6
Mugilogobius abei 1 25.8 A B 7
Pseudogobius masago 648 7.1-24.7 J- A,B,C 4-7
Tridentiger obscurus b) 38.8-80.0 Y-A B b)

Developmental stage: A, adult; J, juvenile; Y, young.
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Fig. 3. Mean numbers of species and individuals / m,
shown by sampling sites and months, at the tidal
pools in the Tama River estuary from April to
July 2007. Error bars indicate standard deviation.
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Fig. 5. Size-frequrncy distribution of Pseudogobius masago, Acanthogobius flavimanus and Gymnogobius
macrognathos collected at the tidal pools (present study) and subtidal zones (data from Yamamoto, 2008)
of site B in the Tama River estuary from April to July 2007. For detailed explanation, see text.
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Information for Contributors

. The scientific journal,"La mer," the official organ of Japanese-French Oceanographic Society (JFOS), is pub-

lished quarterly. "La mer" is open to all researchers in oceanography, fisheries and related sciences in the
world. The journal is devoted to the publication of original articles, short contributions, reviews, book re-
views, and information in oceanography, fisheries and related fields. Submission of a manuscript will imply
that it has not been published or accepted for publication elsewhere. The editorial board decides the acceptance
of the manuscript on the basis of peer-reviews and is responsible for its final editing. The Society reserves the
copyright of all articles in the Journal.

. Submission: Manuscripts must be written in French, English or Japanese. Authors are requested to submit

their original manuscript and figures with one copy to the Editor in chief.

. Publication charges: Each accepted article is charged 50,000 yen for publication. For members, there will be no

page charge for less than ten printed pages, and 10,000 yen will be charged per page for the excess, except for
color pages. For nonmembers there is a publication charge of 10,000 yen per printed page except for color
pages. Color illustrations will be provided at cost.

. Proofs and reprints: Fifty reprints of each article will be provided free of charge. Additional reprints can be

provided in blocks of 50 copies. Proofs will be sent to the corresponding author. A reprint order form will be
sent with the proofs.

. Manuscripts should be sent to

Editor in Chief of "La mer"
Jiro Yoshida
Department of Ocean Sciences
Tokyo University of Marine Science and Technology
Konan, Minato-Ku, Tokyo, Japan 108-8477.
Jiroy@s.kaiyodai.ac.jp

Manuscript Preparation

. General

1) Manuscripts must be typed with double-spacing on one side of A4 size white paper with wide margins.

2) Figures, tables, and figure captions should be prepared separate from the main text.

3) Authors should submit an electronic copy of their paper with the final version of the manuscript. The elec-
tronic copy should match the hardcopy exactly and should be stored in CD-R/W or FD. MS-WORD (Win-
dows) and PDF formats are accepted.

. Details

1) The first page of the manuscript should include the title, author's full names and affiliations including Fax
numbers and E-mail addresses. The corresponding author should be designated. Key words (up to four
words) and running head should be written at the bottom of the page.

2) An abstract of 200 words or less in English or French should be on the second page.

3) The main text should start on the third page. Please adhere to the following order of presentation: main
text, acknowledgements, appendices, references, figure captions, tables. All pages except the first page must
be numbered in sequence.

4) Mathematical formulae should be written with a wide space above and below each line. Syst e me Interna-
tional (SI) units and symbols are preferred.

5) All references quoted in the text should be listed separately in alphabetical order according to the first
author's last name. Citations must be complete according to the following examples:

Article: Yanacr, T. T. Takao and A.Mormvoro (1997): Co-tidal and co-range charts in the South China Sea



64 La mer 46, 2008

derived from satellite altimetry data. La mer, 35, 85-93.

Chapter: WyNNE, M.J. (1981): Pheaophyta: Morphology and classification. In the Biology of Seaweeds.
LoBBaN, C.S. and M. J. WyNNE (eds.), Blackwell Science, Oxford, p. 52-85.

Book: SVERDRUP, H. U., M. W. JonnsoN and R. H. FLEMING (1942): The Oceans: Their Physics, Chemistry and
General Biology. Prentice-Hall, Englewood Cliffs, New York, 1087pp.

6) Illustrations: All illustrations should be provided in camera-ready form, suitable for reproduction (which
may include reduction) without retouching. Photographs, charts and diagrams are all to be referred to as
"Fig(s)." and should be numbered consecutively in the order to which they are referred. They should accom-
pany the manuscript, but should not be included within the text. All figures should be clearly marked on the
back with the figure number and the author's name. All figures are to have a caption. Captions should be
supplied on a separate sheet.

T) Photographs: Original photographs must be supplied as they are to be reproduced (e.g. black and white or
color). If necessary, a scale should be marked on the photograph. Please note that photocopies of photo-
graphs are not acceptable. Half-tone illustrations should be kept to a minimum.

8) Color illustrations: The printing cost of color illustrations must be borne by authors or their institution.
Authors will receive information about the cost on acceptance of the manuscript.

9) Tables: Tables should be numbered consecutively and given a suitable caption on top and each table typed
on a separate sheet.
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