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White-capped breakers observed just off the lighthouse of
Cape Shionomisaki and the Kuroshio

Toru NAKAMURA", Junichi TAKEUCHI”, Yoshiki NaAKAJI”, Yoichi MAEKAWA",
Keiko NakAzATO", Takashi KOIKE”, and Yutaka NaGaTA”

Abstract : We observed regularly the white-capped breakers which are produced by strong cur-
rent in the sea just off the lighthouse of Cape Shionomisaki. The white-capped breakers are
classified into seventeen ranks from —8 through +8. Correlations of the ranks of white-capped
breaker with several quantities such as the east-west component of current speed observed with
ADCP at a fixed point, the sea level difference between Kushimoto and Uragami tide gauge sta-
tions, and the separation distance of the northern edge of the Kuroshio measured southwards
from the tip of Cape Shionomisaki. The separation distance was determined from the position
of the temperature front seen in satellite images. These correlations are very significant, and
the observation of white-capped breaker is shown to be very useful to know oceanic conditions
in the vicinity of Cape Shionomisaki. We defined that white-capped breakers are clearly seen
above rank 4. This means that significant currents would exist in the sea just off the lighthouse
at least for ranks above rank 4 through rank 8. If we define the northern edge of the Kuroshio
with the northern limit of eastward current zone of the Kuroshio, the separation distance of
the northern edge of the Kuroshio should be zero for these cases. It is hard to believe that cur-
rents are geostrophic in shallow waters just near coast. The current would be flowing under the
balance between sea surface gradient and friction due to existence of coast or sea bottom.
MAEKAWA et al. (2011) showed that the distribution of sea surface height in the sea just near
the tip of the Cape Shionomisakai is produced by the temperature and salinity structures in
shallow water less than 300 m, and that the sea level difference between Kushimoto and
Uragami is produced by the surface Kuroshio water which had been brought into near coast re-
gion off the southwestern coast of the Kii Peninsula. The east-west sea level gradient produced
just off Cape Shionomisaki would create an eastward current just along the coast. Besides, sig-
nificant ranks (7 and 8) of white-capped breakers can be seen relatively often in summer sea-
son. This would be related to the seasonal variation of the sea level difference between
Kushimoto and Uragami discussed by NAKAMURA et al. (2012).

Keywords : White-capped breakers off Cape Shionomisaki, Rank of white-capped breakers,
ADCP observation, Sea level difference between Kushimoto and Uragami tide
gauge stations, Separation distance of the northern edge of Kuroshio
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Fig. 1. Map of the area in the vicinity of observation area. A: observation point, B: the position of the direct
current measurement, C: Shionomisaki righthouse, D: Ohkura Island, E: Kometsubu rock and F:
Kuroshima Fishing Port. The map shown in upper right corner shows the position of the main map
relative to Cape Shionomisaki, ; a indicates Cape Shionomisakai, b Ohshima Island and ¢ Kii Peninsula.
Area shown in main map is shown by a square near letter a.
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Fig. 2. An example of white-capped breaker created by strong current. This picture shows a state of white-
capped breaker of rank 8. A : Ohkura Island, B: Kuroshima Fishing Port. Kometsubu rock is hidden by

Ohkura Island.
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Table 1. Number of observation of white-capped
breaker created by current (column A) and
that of ADCP observation (column B) in
each year. Numbers in brackets in column A
indicate the numbers of days without obser-

vation.
Year A B
1996 341 (25) 28
1997 353 (12) 43
1998 357 () 46
1999 360 ( 5) 50
2000 360 ( 6) 52
2001 357 (8 47
2002 356 (9 49
2003 358 (D) 39
2004 353 (13) 36
2005 364 (D 34
2006 359 ( 6) 35
2007 363 ( 2) 36
2008 365 (D 36
2009 362 (3 41
2010 364 (D 34
Total 5,372 (107) 606
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Table 2. Number of observation of white-capped
breaker (column A) and that of ADCP ob-

servation (column B) for each rank of
white-capped breaker.
Rank A B
Rank—4
Rank—3
Rank—2 72 11
Rank—1 123 18
Rank 0 1,238 116
Rank+1 594 o7
Rank+2 564 52
Rank+3 415 49
Rank+4 1,007 147
Rank+5 512 50
Rank+6 o967 74
Rank+17 145 17
Rank+8 127 15
Total 9,372 606
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Fig. 3. Correlation between current speed measured at B shown in Fig. 1 and observed rank of white-capped
breaker. Vertical bars indicate variability range (m+ o, m—0).
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Fig. 4. Correlations between rank of white-capped breaker and sea level difference between Kushimoto and
Uragami tide-gauge stations (white circle) and between east-west current components measured by
ADCP (black circle). Vertical bars indicate variability range (m+ ¢, m—a).
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Fig. 6. Relation between sea level difference between Kushimoto and Uragami tide gauge stations and rank
of white-capped breaker (black circles). Vertical bars indicate variability range (m+ ¢, m—0 ). Sea
level hights at Kushimoto and Uragami tide gauge stations measured from TP are shown with dashed
line and dash and dotted line, respectively. The scales of these lines are common with that of the sea

level difference.
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Occurrence patterns and ontogenetic intervals based
on the development of swimming- and feeding-related
characters in larval and juvenile Japanese sea bass

(Lateolabrax japonicus) in Tokyo Bay

Yasushi TAMURA, Masato MoOTEKI, Toshihiro Yokoo and Hiroshi Kouno*

Abstract: Occurrence patterns of the sea bass (Lateolabrax japonicus) larvae and juveniles
were examined in Tokyo Bay by monthly samplings using the following two types of gear; a
small seine net on tidal flats around the mouth of the Tama River from January 2007 to Decem-
ber 2008, and a ring net in offshore waters from December 2005 to March 2008. Their functional
development was also observed by the osteological method on the basis of 47 cleared-and-
stained specimens of 3.0—30.1 mm BL. The specimens collected from offshore waters were 391
in number, 3.67%1.37 (mean=®SD) mm body length (BL) in ranging from 1.8 to 8.1 mm BL and
yolk-sac and preflexion larvae in developmental stages, while those from tidal flats were 580
with 21.9£11.0 mm BL from 11.4 to 123.5 mm BL and varied from flexion larvae to juveniles.
No specimens from 8 to 11 mm BL were collected in this study. The sea bass larvae spawned and
hatched offshore waters near the mouth of Tokyo Bay are likely to migrate passively to in-
shore waters and then swim weakly with poorly developed swimming characters to inshore wa-
ters. In this study, few sea bass specimens smaller than 13.5 mm BL and larger than about 30
mm BL were collected in tidal flats, and thus the tidal flats of inner Tokyo Bay provide a nurs-
ery ground mainly for 13.5—30.0 mm BL juveniles. The 13.5—20.0 mm BL juveniles start ac-
quiring functional, juvenile swimming and feeding abilities.

Keywords: Japanese sea bass, early life history, shoreward migration, functional development,

Tokyo Bay

1. Introduction

The Japanese sea bass (Lateolabrax japo-
nicus), distributed on the coast of Japan from
Hokkaido south to Kyushu and the southern
coast of the Korean Peninsula (HATOOKA,
2002), is known as a typical euryhaline fish,
migrating from the sea to brackish/fresh wa-
ters, and as an important commercial fish, not
only for fisheries but for angling in Japan
(SHoJI et al., 2002). Therefore, in Ariake Bay,

Laboratory of Ichthyology, Tokyo University of Ma-
rine Science and Technology (4-5-7 Konan, Minato,
Tokyo 108-8477, Japan)
* Corresponding author: Hiroshi KOHNO

Tel; +81-3-5463-0529
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E-mail; hirokun@kaiyodai.ac.jp

the gross biology of sea bass has been well
studied, especially their early life histories;
eggs are spawned and larvae hatch in off-
shore/open waters, remaining there up to
about 8 mm in body length (BL), before mov-
ing to coastal surf zones, where the larvae are
divided into two migratory groups, one re-
maining in the surf zone and the other swim-
ming up rivers (MATSUMIYA et al., 1985; HIBINO
et al., 2002, 2006). In Tokyo Bay, central Japan,
many studies of the sea bass have been con-
ducted to date, and their spawning ground has
been identified as the mouth of Tokyo Bay
(WATANABE, 1965; Suzuki, 1982), with larvae
collected by ring nets in offshore waters
(KANOU et al., 2002a; NAGAIWA et al., 2005) and
juveniles using seine nets in coastal tidal
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Fig. 1. Map of Tokyo Bay, central Japan, indicating the locations of sampling stations. A-D, stations for
seine-net samplings; 1—7, those for ring-net samplings.

flats/surf zones (KANOU et al., 2000; ARAYAMA
et al., 2002; KoHNO et al., 2008; MOTEKI et al.,
2009).

As survival during the larval stage affects
recruitment and population fluctuations in the
sea bass, the early life history and ecology of
the species were reviewed by ISLAM et al.
(2011). However, no studies are available on
the relationships between occurrence patterns
and the functional development of larvae and
juveniles of the sea bass. This study aimed to
clarify the relationships between ontogenetic
habitat shifts and the functional development
of swimming and feeding abilities of the sea
bass in Tokyo Bay. These relationships will in-
dicate whether the larvae/juveniles move ac-
tively or passively, and represent important,
basic information for elucidating the ways in
which each area of Tokyo Bay provides habi-
tats for the sea bass and for managing sea bass

resources in Tokyo Bay.

2. Materials and methods

The specimens used in this study originated
from three sources and were collected using
two types of sampling gear. A small seine net
with 1-mm mesh size, as described by KANOU et
al. (2002b), was deployed monthly at four sam-
pling sites [stations (Stns.) A—D: Fig. 1] on
tidal flats around the mouth of the Tama River
located on the innermost, western coast of To-
kyo Bay from January 2007 to December 2008
(except February 2008). A 1.3 m diameter ring
net with 0.5-mm mesh size was towed for
15minutes by 2 knots through surface waters
during day time; two vessels, a 19-ton training
ship (T/S) Hiyodori and a 277-ton T/S Seiyo-
maru, of the Tokyo University of Marine Sci-
ence and Technology were operated. The
Hiyodori samples were collected monthly from
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four stations (Stns. 1—4: Fig. 1) located in the
innermost offshore waters of Tokyo Bay from
January 2006 to March 2008, while those of
Seiyo-maru were collected from the inner Stn. 4
and three stations (Stns. 5—7) in outer Tokyo
Bay in December 2005. The aim of the Seiyo-
maru samples was to compare sizes and devel-
opmental stages between inner and outer
Tokyo Bay. The collected specimens were fixed
in 5% buffered seawater formalin and later
preserved in 70% ethanol. The identification
followed the method of KiNosHITA and FuJiTa
(1988) for the larvae larger than about 9 mm
BL, and the series method of LEIS and TRNSKI
(1989) was applied for those smaller than
about 9 mm BL. The sizes of specimens col-
lected were measured to the nearest 0.1 mm us-
ing a micrometer attached to a binocular
dissecting microscope for specimens smaller
than 10 mm BL and callipers for specimens 10
mm BL and larger; developmental stages were
determined by the methods of KENDALL et al.
(1984). Specimens collected by ring-nets were
all measured, while those by seine nets were
measured at most 30 individuals by each sta-
tion/month.

Of the specimens sampled, 47 (19 of 3.0—8.1
mm BL collected by Hiyodort from the inner-
most waters and 28 of 11.4—30.1 mm BL col-
lected by seine net from tidal flats) were
selected for the morphological study to deter-
mine functional development. These specimens
were cleared and stained by the method of
PorTHOFF (1984), and the following characters
were observed: fin supports and fin rays, the
angle of notochord flexion, the vertebral
centra, hemal and neural arches and spines and
the greatest body depth and its position as
swimming-related characters and the structure
of the upper jaw (maxilla, premaxilla and
supramaxilla), the structure of the lower jaw
(Meckel’s cartilage, dentary, angular and
retroarticular), jaw teeth, mouth width, pre-
maxilla/gape, pharyngeal teeth, suspensorium,
hyoid arch, branchiostegal rays and opercular
bones as feeding-related characters. Develop-
mental phases were determined by the method
of KonNo and Sora (1998), in which both the
histogram method of developmental events by
0.5-mm BL fish size intervals employed by

SAKAT (1990) and the key character method
were applied. In this study, the description was
based on the body length in the state of ethanol
preservation and on the smallest specimen
when the developmental phenomena and events
were observed.

3. Results
3.1. Occurrence patterns

The total number of sea bass larvae collected
offshore by ring nets towed by both Hiyodori
and Seiyo-maru was 391 with size of 3.67%1.37
mm BL (mean=*SD), ranging from 1.8 to 8.1
mm BL, with a mode of 3.00—3.49 mm BL (Fig.
2). In the innermost offshore waters of Stns.
1—4, without regard to sampling vessel, the
number of specimens collected was 191 of 4.44
*1.39 mm BL, ranging from 1.8 to 8.1 mm BL,
and with a mode of 3.50—3.99 mm BL; water
temperature and salinities varied from 7.8 to
15.1°C and from 26.0 to 32.3, respectively. The
specimens collected from the outer Tokyo Bay
of Stns. 5— 7 numbered 200, with 2.93£0.84 mm
BL ranging from 1.8 to 6.3 mm BL and with a
mode of 3.00—3.49 mm BL; water temperature
and salinities varied from 15.4 to 16.1°C and
from 33.3 to 34.3, respectively. The months of
occurrence were limited to the period from De-
cember to March.

The sizes of the 230 Seiyo-maru samples col-
lected in December 2005 were as follows by
sampling station (Fig. 3): Stn. 4, n=30, mean
£SD=3.15%0.93 mm BL, ranging from 1.8 to
6.1 mm BL; Stn. 5, 99, 3.43+0.49 mm BL, 1.8—
5.6 mm BL; Stn. 6, 11, 3.62+1.45 mm BL, 1.8—
6.3 mm BL; and Stn. 7, 90, 2.290.57 mm BL,
1.8 —4.8 mm BL. The sizes of these specimens
were significantly different among stations
and between Stn. 7 and others (Tukey’s test,
P<0.0D).

Of the 391 larvae collected offshore, 88
(22.29%) were yolk-sac larvae and the remain-
der of 303 were preflexion larvae. Of 200 larvae
collected in outer Tokyo Bay, 83 (41.5%) were
yolk-sac larvae and the remainder of 117 were
preflexion larvae. Of 191 larvae collected in in-
ner Tokyo Bay, 5 (2.6%) were yolk-sac larvae
and the remainder of 186 were preflexion lar-
vae.

All the specimens collected offshore in inner
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Fig. 2. Body length (BL) frequencies of larval and juvenile Lateolabrax japonicus collected from offshore wa-

ters (n=2391) and tidal flats (n=311) in Tokyo Bay.

Tokyo Bay by Hiyodori were preflexion larvae.

The total number of sea bass collected from
tidal flats was 580, varying from 11.4 to 123.5
mm BL with 21.9711.0 mm BL and a mode of
16.0—16.5 mm BL (Fig. 2) ; water temperature
and salinities fluctuated from 12.3 to 30.5°C
and from 0.1 to 29.9, respectively. These speci-
mens were collected from January to August,
and their developmental stages varied from
flexion larvae to juveniles. Monthly changes in
their body sizes are shown in Fig. 4. The sea
bass grew in the tidal flats from January
(12.3£0.9 mm BL: n=2) to April 2007 (19.2+
3.6 mm BL: n=54) and from March (16.2 =+
1.1 mm BL: n=59) to May 2008 (40.9 =
12.5 mm BL: n=12).

Specimens of 8.2—11.3 mm BL were not col-
lected either from offshore waters or from tidal
flats, and in the latter, few specimens were
larger than about 30 mm BL (Fig. 2).

3.2. Functional development
3.2.1. Swimming-related characters

Flexion of the notochord end : Flexion of the
notochord end was not detected in the speci-
mens collected from offshore waters, the larg-
est of which was 8.1 mm BL (Fig. 5A). Noto-
chord flexion was complete in the smallest
specimen collected from the tidal flat, 11.4 mm
BL, and the angle was stable at about 40°—
47°.

Caudal fin supports and fin rays : No

elements of the caudal skeleton were detected
until 5.5 mm BL, when two cartilaginous buds
of hypurals 1—2 were observed. The cartilagi-
nous buds of the parhypural and hypural 3 ap-
peared at 6.9 mm BL and hypural 4 at 8.1 mm
BL. In addition, the smallest specimen from the
tidal flats (11.4 mm BL) possessed the carti-
laginous bud of hypural 5 as well as those of
the hemal and neural spines of the future pleu-
ral centra 2 and 3 and epurals 1—3. The bony
urostyle and pleural centra 2 and 3 were ob-
served in the 11.4-mm BL specimen. In a 13.8-
mm BL specimen, ossification was perceived in
the parhypural, hypurals 1—5 and the hemal
and neural spines of future pleural centra 2 and
3. All cartilaginous elements, including epurals
1—3, started ossifying at 15.4 mm BL.

Principal caudal fin rays were first discerned
at 5.5 mm BL, when four rays were counted
(Fig. 5B). The adult complement of 8 + 7 prin-
cipal caudal fin rays was attained at 11.4 mm
BL.

Dorsal fin supports and fin rays . The small-
est specimen with dorsal fin supports was 11.4
mm BL, in which an adult complement of 25
cartilaginous pterygiophores was observed.
The ossification of three of these was first per-
ceived at 14.2 mm BL. All pterygiophores
started ossifying at 17.5 mm BL.

Dorsal fin rays were first discerned at 11.4
mm BL, when 12 soft fin rays were observed
(Fig. 5C). Two spines were first perceived at
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Fig. 3. Body length (BL) frequencies of larval Lateolabrax japonicus collected from Tokyo Bay offshore wa-
ters in December 2005 by the training ship Seiyo-maru, shown by ring-net sampling sites (Stns. 4—17).
For sampling stations, see Figure 1.

11.7 mm BL, and the adult complement of 26— pterygiophores was first discerned at 11.4 mm
28 rays was attained at 13.0 mm BL. BL. Ossification of two pterygiophores was

Anal fin supports and fin rays . The adult first observed at 14.2 mm BL, and all elements
complement in number of eight cartilaginous started ossifying at 17.5 mm BL.
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Fig. 5. Changes in swimming-related characters with growth in Lateolabrax japonicus collected from Tokyo
Bay.

Pectoral fin supports and fin rays . The pec-
toral fin supports of a rod-shaped bony
cleithrum, a coraco-scapular cartilage and a
bladelike cartilage, which later grew into

The anal fin rays were first discerned at 11.4
mm BL with one spine and eight soft rays (Fig.
5D). The adult complement of 10—12 rays was
attained at 11.7 mm BL.
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actinosts, were observed in specimens of 3.1—
8.1 mm BL collected from offshore waters. A
supracleithrum and posttemporal were ob-
served at 11.4 mm BL. Ossification of the
coraco-scapular cartilage and actinosts was
first perceived at 15.4 mm BL.

The pectoral fin rays were first discerned at
11.4 mm BL, when eight were noted (Fig. 5E).
The adult complement of 15— 18 rays was at-
tained at 13.8 mm BL.

Pelvic fin supports and fin rays . The pelvic
fin support, the basipterygium, was first dis-
cerned at 11.4 mm BL, and ossification started
at 15.4 mm BL.

The pelvic fin rays were first discerned at
11.7 mm BL, with one spine and three soft rays
(Fig. 5F). An adult complement of six rays was
attained at 13.8 mm BL.

Vertebra: No vertebral elements were recog-
nised in the specimens collected from offshore
waters, up to 8.1 mm BL. In the smallest speci-
men collected from the tidal flat (11.4 mm BL)
all hemal and neural arches and spines and
centra were observed, with the ossification of
the first three neural arches and spines. All
arches and spines started ossifying at 14.2 mm
BL.

Maximum body depth and its position . The
ratio of the maximum body depth to BL was
13% in the smallest specimen examined of 3.1
mm BL, and varied from 13% to 20% in speci-
mens up to 14.2 mm BL (Fig. 5G). Thereafter,
the ratios were stable at about 22—26%.

The position of maximum body depth varied
from 23% at 4.3 mm BL to 56% at 6.1 mm BL
(Fig. 5H) and became stable from 28% to 39%
thereafter.

3.2.2. Feeding-related characters

Mouth width : The mouth opened in all
specimens examined. The mouth width was 0.3
mm in the smallest specimen of 3.1 mm BL and
increased gradually in specimens from offshore
waters (Fig. 6A). The growth rate became
more or less rapid in specimens from 11.4 to
about 20 mm BL and slowed thereafter, with
the largest specimen examined (30.1 mm BL)
possessing a 4.2-mm-wide mouth.

Jaw structure : The smallest specimen of 3.1
mm BL possessed the maxilla and Meckel’s

cartilage. Premaxilla, dentary and angular
were discerned at 5.5 mm BL, the retroarticular
at 13.0 mm BL and supramaxilla at 14.7 mm
BL.

Premaxilla length/Gape . The ratio of pre-
maxilla to gape was 66% at 5.5 mm BL (Fig.
6B). Although the ratio tended to increase in
specimens collected from offshore waters, the
ratio varied from 70% to 90% in the specimens
from tidal flats.

Jaw teeth . The first upper jaw teeth ob-
served were six in number at 5.5 mm BL (Fig.
6C). The number of upper jaw teeth increased
exponentially up to about 20 mm BL, with a
maximum of 198 at 19.5 mm BL and varying
from 100 to 150 thereafter. The lower jaw teeth
were first observed at 11.4 mm BL with four
noted (Fig. 6D). The lower jaw teeth increased
up to about 20 mm BL with a maximum num-
ber of 112 at 19.5 mm BL, and the number be-
came stable thereafter.

Suspensorium . The palatoquadrate and hyo-
mandibular-symplectic cartilages were first ob-
served at 3.1 mm BL and the bony
ectopterygoid and endopterygoid at 11.4 mm
BL. The quadrate, hyomandibular and
symplectic started ossifying at 13.0 mm BL and
the palatine and metapterygoid began at 13.8
mm BL.

Hyoid and branchiostegal rays . The
ceratohyal-epihyal and interhyal -cartilages
were first observed at 3.1 mm BL and the
hypohyal cartilage was noted at 11.4 mm BL.
The ceratohyal and epihyal started ossifying at
13.0 mm BL, the interhyal began at 13.8 mm
BL and the hypohyal started at 15.4 mm BL.

A branchiostegal ray was first observed at
5.5 mm BL, and the adult complement of seven
rays was attained at 11.4 mm BL (Fig. 6E).

Pharyngeal teeth . The first upper pharyn-
geal teeth, 10 in number, were observed at 5.5
mm BL (Fig. 6F). The number of teeth in-
creased exponentially with the maximum num-
ber of 134 at 22.0 mm BL.

The first lower pharyngeal tooth, 1 in num-
ber, was observed at 8.1 mm BL (Fig. 6G). The
number of teeth increased exponentially with
the maximum number of 132 at 22.0 mm BL.

Opercular bones . The first opercular bones
to appear were the prepercle and opercle at 5.5
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Fig. 6. Changes in feeding-related characters with growth in Lateolabrax japonicus collected from Tokyo Bay.

mm BL. The interopercle and subopercle were

first observed at 11.4 mm BL.

4. Discussion

4.1. Developmental phases of Japanese sea

bass larvae and juveniles

The development of characters concerning
the swimming and feeding functions of the
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Japanese sea bass larvae and juveniles obtained
in this study are shown in Fig. 7 and 8.

4.1.1. Developmental phases of swimming
function

Based on the development of characters re-
lated to swimming function, sea bass larvae
and juveniles were divided into the following
four phases.

1) The phase of less active swimming (3.0 —

5.5 mm BL)

No swimming-related characters appeared,
other than the pectoral fin elements such as the
cleithrum, coraco-scapular cartilage and fan-
like cartilaginous plate, which developed later
into actinosts. The larvae in this phase are
therefore considered to drift passively rather
than to swim actively.

2) The phase of caudal fin propulsion (5.5—
8.5/11.0 mm BL)

In this phase, the caudal fin supports and fin
rays started appearing. However, no other
characters related to swimming were detected;
therefore, this phase was judged as the caudal
fin propulsion phase, during which the beating
of the caudal fin produces propulsion. Larvae
of 8.5—11.0 mm BL were not examined in this
study, and thus the end of this phase and the
beginning of the next phase were not precisely
determined.

3) The phase of whole body propulsion (8.5/
11.0—14.0 mm BL)

The neural and hemal arches and spines and
the vertebral centra started appearing and
were completed in number during this phase.
These characters are considered to reinforce
the body axis (KoHNO et al., 2000). Notochord
flexion was also completed, all the elements of
caudal fin supports appeared and the number
of caudal fin rays reached the adult comple-
ment during this phase, indicating that the
beating ability of the caudal fin would increase
(KonNo and SoTa, 1998). The strong body axis
and completed caudal fin allow larvae to swim
powerfully by propagating the beat of the
whole of the body posterior to generate propul-
sion (OMORI et al., 1991). The dorsal and anal
fin supports and fin rays were also completed
during this phase; these characters prevent the
larvae from rolling caused by whole-body

beating (GOSLINE, 1979). In addition, the pecto-

ral and pelvic fin rays started appearing during

this phase. The development of paired fin rays

indicates the improvement of manoeuvrability

(NARISAWA et al., 1997).

4) The phase of functional, juvenile swim-
ming (over about 14.0 mm BL)

All characters concerning swimming func-
tion became complete in number, and ossifica-
tion started in all related elements. Therefore,
larvae/juveniles larger than about 14 mm BL
were considered to have acquired the func-
tional, juvenile swimming mode.

4.1.2. Developmental phases of feeding func-

tion

Based on the development of characters re-
lated to feeding function, sea bass larvae and
juveniles were divided into the following five
phases.

1) The phase of primordial sucking (3.0—5.5
mm BL)

The oral cavity was enclosed by the maxilla,
Meckel’s cartilage, a part of the suspensorium
and hyoid arch, indicating that the feeding
mode in this phase is sucking. However, these
elements, other than the small bony maxilla,
are cartilaginous, and thus negative pressure
for sucking is considered to be low (see KOHNO
et al., 1997).

2) The phase of increasing sucking ability
and biting preparation (5.5 —8.5/11.0 mm
BL)

The gape elements of the premaxilla, dentary
and angular started appearing in this phase,
indicating that gape opening and closing abili-
ties increase (SHINAGAWA et al., 2002). The ap-
pearance of branchiostegal rays and opercular
bones would increase the sucking ability dur-
ing this phase.

Although the upper jaw and pharyngeal
teeth started appearing during this phase, no
lower jaw teeth were recognised until 11.4 mm
BL. The functions of the jaw and pharyngeal
teeth are to bite/capture and to propel acquired
food organisms to the digestive tract, respec-
tively (GOSLINE, 1971). No specimens were ex-
amined between 8.5 and 11.0 mm BL in this
study, and thus the larval size when the feeding
mode of biting started could not be determined;
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therefore, this phase was tentatively recog-

nised as biting preparation.

3) The phase in which sucking and biting
abilities improved (8.5/11.0—13.5 mm BL)
In this phase, sucking ability was improved

by the appearance of all the suspensorium and
opercular bone elements. The numerical com-
pletion of the branchiostegal rays also helps to
generate more or less strong negative pressure
for sucking. In addition to sucking, the feeding
mode of biting is gained by the appearance of
lower jaw teeth. The stable ratio of premaxilla
length to gape of 70—90% is considered to al-
low gape opening and closing to function well
and thus to improve biting ability.

4) The phase of pre-functional, juvenile feed-
ing (13.5—20.0 mm BL)

All the characters concerning feeding func-
tion except for the number of jaw and pharyn-
geal teeth became complete in number, and
ossification began in all related elements.
Therefore, larvae/juveniles of 13.5—20.0 mm
BL are considered to have acquired a pre-
functional, juvenile feeding mode.

5) The phase of functional, juvenile feeding
(over about 20 mm BL)

The number of jaw and pharyngeal teeth be-
came stable, and the functional, juvenile

feeding mode was considered to be acquired in
juveniles of over 20 mm BL.

4.2. Relationships between developmental
stages and distribution patterns
The relationships between the developmental
phases obtained in this study and the appear-
ances of Japanese sea bass larvae and juveniles
in Tokyo Bay are schematically shown in
Fig. 9.

4.2.1. Spawning and ontogenetic shoreward
migration

In this study, yolk-sac larvae were mainly
collected from outer Tokyo Bay, and the sizes
of offshore specimens were significantly differ-
ent among stations and between Stn. 7 and oth-
ers. These results support the results of
WATANABE (1965) and SuzUKI and ITon (1984),
according to whom the spawning ground of sea
bass in Tokyo Bay was considered to be located
in waters of the bay mouth, with hatching lar-
vae moving to the inner waters of Tokyo Bay
with growth. Also, in Ariake Bay, the spawn-
ing ground is located in the central region of
the bay, and the eggs and larvae disperse to-
ward the inner region (HisINO, 2002; HIBINO et
al., 2002). These spawning grounds are located
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in thermohaline frontal regions formed be-
tween the outer and inner bay waters, and eggs
are densely distributed in these regions
(WATANABE, 1965; NAKATA and IWATSUKI,
1991; HIBINO et al., 2007).

This study revealed that nearly all the larvae
collected offshore that were smaller than 5.5
mm BL would drift passively with primordial
characters related to their swimming function,
and even larger larvae up to about 8 mm BL
would swim only weakly using caudal fin pro-
pulsion (Fig. 9). These results support the sug-
gestion that the inshore ontogenetic migration
of sea bass early larvae depends on shoreward
currents. Onmr (2002) speculated that the
gravitational circulation in Wakasa Bay in the
Sea of Japan plays an important role in larval
drift to the inshore region through the middle
to bottom layer, and HIBINO et al. (2007)
showed that in Ariake Bay, larvae temporally
expand their distribution into the inner, shal-
low water regions via the middle layer. In this
period of shoreward migration, the first feed-
ing larvae prey on smaller zooplankton, based
on the estimated mouth size (IsLaM and
TANAKA, 2005). Sea bass larvae smaller than
about 8 mm BL likely generate low negative
pressure to suck food organisms with a poorly
developed oral cavity.

4.2.2. Habitat shifts with development

The largest larva collected from offshore wa-
ters in Tokyo Bay was 8.1 mm BL, and the
smallest larva from the innermost tidal flats
was 11.4 mm BL in this study. Dodging
behaviour by sea bass larvae larger than 8 mm
BL is very unlikely because KaNOU et al.
(2002a) collected larger, more active fish larvae
such as a 39.4 mm BL juvenile of atherinid
Hypoatherina valencienneis, a 28.4 mm BL ju-
venile of carangid Seriola quinqueradiata and a
24.6 mm BL mugilid Mugil cephalus cephalus
using the same gear and methods as those used
in this study. OumI (2002) reported that sea
bass of 8 —14 mm BL appeared in sandy bottom
waters of 5—10 m depth off the Yura River
mouth of Wakasa Bay. Therefore, sea bass lar-
vae of 8 —11 mm BL would be distributed in
shallow, bottom waters of Tokyo Bay (Fig. 9).

The larvae and juveniles collected from the

tidal flats ranged from 11.4 to 123.5 mm BL in
this study. However, few fish measuring 13.5
mm BL and smaller were collected, and num-
bers decreased suddenly at about 30 mm BL
and larger, with a mean of 21.9 mm BL and
mode of 16.0—16.5 mm BL. The juvenile stage
was attained at 13.8 mm BL when the fin rays
reached their adult complements in number.
Therefore, the tidal flats of inner Tokyo Bay
provide a nursery ground mainly for 13.5—30-
mm BL juvenile sea bass (Fig. 9). This study
showed also that sea bass early juveniles start-
ing at 13.5 mm BL acquire functional, juvenile
swimming and feeding abilities.

The early juveniles appearing in the tidal
flats swim actively and select this area as a
habitat. The complete juvenile feeding mode
was acquired at 20 mm BL, with the stability of
tooth numbers. N1P et al. (2003) reported that
sea bass of 11—20 mm BL fed on copepods and
cladocerans, shifting to decapods and amphi-
pods at 20 mm BL in Tolo Harbour, Hong
Kong. FuJgita et al. (2007) also indicated that
sea bass larger than 20 mm BL fed exclusively
on mysids in Ariake Bay. HIBINO et al. (2006)
showed that in the sand flats of the eastern
part of Ariake Bay, sea bass juveniles of 16.7
and 22.9 mm BL on an average at the spring
and neap tides, respectively, migrate to shallow
water after sunrise to feed on copepods before
emigrating from there after sunset.

4.2.3. Importance of larval and juvenile habi-
tats for the Tokyo Bay sea bass

Tokyo Bay has been a leading location for
the catch of sea bass, with the production from
the bay accounting for about 30% of the total
catch in the 2009 fiscal year (Fisheries
AGENCY, 2011). As pointed out by SHOJI et al.
(2002), the Tokyo Bay sea bass catch has been
favourably retained since the 1990s, indicating
that the recruitment of sea bass has been sta-
ble. A major factor affecting recruitment vari-
ability is the survival rate during the early life
history (Houpg, 1987). The Tokyo Bay sea
bass, as a migratory fish, is considered to face
two major challenges during the egg, larval
and juvenile stages, one being the long-distance
migration from the spawning to nursery
grounds, and the being other the selection of a
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nursery ground.

No serious environmental problems affect
the sea bass spawning ground at the mouth of
Tokyo Bay. However, the distance from the
spawning ground at the mouth of Tokyo Bay
to the innermost tidal flats is about 50 km, and
the avenue to the nursery ground including the
spawning ground is narrow and experiences
heavy maritime traffic, with the giant ports of
Yokohama, Tokyo and Chiba being located in
the inner bay. Therefore, the challenging mi-
gration of the sea bass to the nursery ground
could likely be disturbed by anthropogenic im-
pacts, although the details of the mechanisms
of transport for eggs and early larvae to the
nursery grounds are unknown.

Many studies have pointed out that sea bass
nursery grounds are diversified, including surf
zones in open waters and tidal flats, shallow ar-
eas, seagrass beds and rivers in embayments
(HmBiNo, 2002; KinosHITA, 2002; FuJita et al.,
2007), and the adaptability of sea bass to these
diversified environments would increase the
stability of their population dynamics. How-
ever, these nursery grounds in innermost To-
kyo Bay have been destroyed by factors such as
reclamation, dredging and the construction of
ports and estuarine dams.

To properly maintain the Tokyo Bay sea
bass population, further studies are needed to
demonstrate the mechanisms of shoreward mi-
grations and the variety of embayment nurser-
ies used, and the environments of the habitats
required during the early life history of the sea
bass should be protected from any sort of de-
struction.
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Early life history of the rockfish Sebastes inermis
inferred from otolith microstructure and nutritional

condition assessment in two temperate bays, central Japan*

Miguel RUANO'", Ana Teresa GONCALVES®, Takashi YAMAKAWA' and Ichiro Aokr'

Abstract: In order to identify any factors regulating larval extrusion, growth rates, and settle-
ment patterns of the rockfish Sebastes inermis, otolith microstructure analysis was conducted
for two samples from two distinct but contiguous fishing sites in the southwest coast of Miura
Peninsula in central Japan: Sajima Bay and Aburatsubo Bay. Condition indices (RNA : DNA
ratio, total proteins, Fulton’s K) were also examined for habitat quality assessment. Four
monthly extrusion groups were identified by daily age backcalculation. Growth rate during the
planktonic period was positively related with the duration of this life stage and with water
temperature. Flexible settlement timings of each group suggested an adaptive strategy to vari-
ability in environmental conditions: larvae experiencing unfavourable temperature settle ear-
lier at smaller lengths and grow faster after settlement. Clear differences in traits related to
planktonic and post-settlement stages between sites imply the utilization of different habitats
during early life stages, and suggest that offshore mixing of larvae might not be occurring. Ju-
veniles in Sajima Bay had higher growth and condition indices, showing a higher habitat qual-
ity and importance as a nursery of this site.

Keywords: growth rate, nutritional condition, otolith, Sebastes inermis

1. Introduction

The rockfish Sebastes inermis inhabits rocky
reefs and seagrass (Zostera and Sargassum)
beds, preying upon small fishes and marine in-
vertebrates (NAKABO, 2000). This species is im-
portant for both commercial and recreational
fishing activities and is a major demersal fish
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resource in coastal waters of Japan and south-
ern Korea (KAMIMURA et al., 2011). In Sebastes
spp., eggs are fertilized, develop and hatch in-
ternally, and soon after larvae are extruded
(released) at an advanced stage of develop-
ment, in which organogenesis is essentially
complete before starting a planktonic stage
(MoseR and BoOEHLERT, 1991, WourMms, 1991,
NaRAGAWA and HIROSE, 2004). Some young-of-
the-year migrate into nearshore areas (e.g.
seagrass beds) as larvae or very early juveniles,
after completing their planktonic stage off-
shore. This ontogenetic movement has been de-
scribed as an adaptive strategy to allow
nearshore rockfishes to maximize settlement,
1—2 months after extrusion for S. inermis
(PLAZA et al., 2003), and avoiding offshore dis-
persal.

The survival success during the early life
stages depends on both biotic (predation, food
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availability and prevalence of pathogens) and
abiotic (temperature, tidal transportation or
oxygen depletion) factors (JENKINS et al., 1998,
BORGES et al., 2007). Fish larvae are highly vul-
nerable to mortality and larval cohorts tend to
experience a rapid loss of individuals
(BOEHLERT and YAMADA, 1991). The close rela-
tionship between daily growth rate and sur-
vival of larvae has been verified for some
species and is known as the growth-selective
mortality (ANDERSON, 1988, TAKASUKA et al.,
2007). Defining the timing and duration of the
early life stages is crucial to understand the
strategies adopted by the species during the
transition to benthic habitat (CHAMBERS and
LecGerT, 1987, HOUDE, 1987, MOSER and
BoEHLERT, 1991). Several studies have pre-
sented effective methods by analysing the se-
quence of daily growth increments of otoliths
to describe life traits, in particular the extru-
sion date and growth rate (NELSoN, 2001,
TAKAHASHI et al., 2001), and to determine the
duration of pelagic larvae (PLAZA et al., 2003).
There is however a lack of information on the
nutritional condition of early life of the rock-
fish S. inermis. Poor overall nutritional condi-
tion is frequently associated with poor feeding
success and/or unstable environmental factors;
therefore, fish with lower condition could have
higher mortality rates (CHICHARO et al., 1998,
DurtiL and LAMBERT, 2000). The RNA : DNA
ratio has been used as an index of nutritional
condition (e.g. CLEMMENSEN and DoAN, 1996).
RNA concentration fluctuates in response to
food availability and demand for protein syn-
thesis — higher in early life stages due to accel-
erated somatic growth — while DNA remains
relatively  constant throughout lifecycle
(CALDARONE and BuckLEY, 1991). Hence, in
early life stages of fishes, RNA : DNA ratio
can be used as a proxy of survival potential via
nutritional condition and growth performance
(CHICHARO et al., 1998).

The aim of the present study was to examine
the spatio-temporal variability of the settle-
ment of S. inermis in two comparative bays in
Miura Peninsula, central Japan, through
otolith microstructure analysis. We also aimed
to analyze physiological condition indices along
with daily growth rates of juveniles to compare

habitat quality and suitability for juvenile re-
cruitment. Three hypotheses are tested: Hi- S.
inermis larval duration, growth rate, and set-
tlement timing along the Miura Peninsula
show temporal variability and are temperature
related; H,- Larval transport and settlement
into inshore areas occur separately for each
bay and in a small geographical range; H;-
Nutritional condition of settled rockfish varies
among the study sites and the growth rate is
affected by their condition.

2. Materials and methods
2.1 Sampling

Surveys were carried out at two bays in
Miura Peninsula, central Japan, separated by
13.5 km from each other, Sajima Bay (Saj) (35°
12/40.50"N-139°37'1.12"E) and Aburatsubo Bay
(Abt) (35°9'23.38"N —139°36'50.36"E) (Fig. 1.
Boat seine net and set net were used for sam-
pling in Zostera marina canopy areas in both
bays twice per month from May to July of
2010. Juveniles of Sebastes spp. were collected
and kept at —80°C Sea surface temperature
(SST) data were obtained from Fisheries and
Technology Centre of Kanagawa Prefecture da-
tabase (www.agri-kanagawa.jp/suisoken/kaik
yozu). Only juveniles that were correctly iden-
tified as Sebastes inermis as described by KAl
and NAKABO (2008) were used for the study (V
=550). Total length (L) and wet weight were
measured to the nearest 0.1 mm and 0.1 g, re-
spectively. Both left and right sagittal otoliths
were extracted, cleaned, and stored dry.

2.2 Otolith microstructure analysis

Daily growth increment (DGI) readings
were carried out using the left otolith, after
confirming statistical equality of increment
number between each pair of otoliths. All
otoliths were mounted in epoxy resin, fixed in-
dividually on a glass slide, and polished with
waterproof abrasive grit 400. The otoliths on
glass slides were observed under an optical mi-
croscope system coupled to a camera (Ratoc
System Engineering, Japan). DGIs were
counted and DGI widths were measured along
the longest axis from the nucleus core to the
outermost margin. Duplicate readings were
conducted and mean age after extrusion was
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140°13E
35°45'N

Pacific
Ocean

34°48°'N
139°19°E

Aburatsubo
Bay

Fig. 1. Location of Aburatsubo Bay (Abt) and Sajima Bay (Saj) on the southwest coast of Miura Peninsula,

Japan.
determined. The damaged otoliths without and extrusion check in newly extruded larvae
clear distinction of daily increments or clear (24.7£1.5 pm from the core, corresponding to
signs of life stages were excluded from the 6—10 rings) were adopted in the present study.

analysis. Following the validation by PLAZA et PLAZA et al. (2001) also indicated the length at
al. (2001), daily periodicity of ring deposition extrusion as 6.68 mm.
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Fig. 2. Mean otolith increment width profile for early stages, planktonic (P1), and post-settlement (Ps) I and
II for Sajima (dashed line) and Aburatsubo (solid line).

Individual age and back-calculated total
length of 219 specimens of S. inermis were esti-
mated by the biological intercept method
(CAMPANA, 1990). Daily growth rates were es-
timated based on back-calculated sizes using
the following equation :

Gri=Li—L;

where Gr;is the growth rate at daily age of i, L
is the total length at i and L, ;is the total
length at i—1 (CaMPANA, 1990, CAMPANA and
JONES, 1992). Regression line was fitted to the
relationship between total length, otolith ra-
dius and age by using least squares method.
Planktonic (P1) and post-settlement (Ps)
stages were defined based on the daily ring
width profile (Fig. 2) and observed settlement
check formations (PLAZA et al., 2001). P1 period

starts after extrusion and ends when the incre-
ment width shows a sudden increase rate with
a settlement check. It was possible to distin-
guish two growth phases within the Ps period:
Ps I showed an increasing trend of growth rate
after the start of the Pl period, and Ps II
showed a decreasing trend of the growth rate
after the Ps I phase. The transition centered
method (WiLsSON and MCCORMICK, 1999) was
used to reduce the age effect on the analysis of
growth rates before and after settlement in
each group from each site. The parameters ex-
tracted from the increment profiles were ana-
lyzed and used for definition of each stage,
originating several life trait variables (Table
1). Length at 120 days and growth rate until
120 days were assessed to provide average in-
formation on early life stages until early Ps II.
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Table 1. Summary of the variables extracted from DGI analysis

Otolith radius at extrusion
Otolith radius at end of Pl stage
Otolith radius at end of Ps I stage
Ring number at start of Ps II
Length at settlement

Length at 120 days

Time duration of Pl stage
Time duration of Ps I stage
Pl stage growth rate

Ps I stage growth rate
Growth rate until 120 days

Abbreviations: Pl — planktonic; Ps I — first period of post-settlement; Ps II — last period of post-settlement; 120

days after extrusion was found in 92% fish aged

Most (92%) of fish examined were aged older
than 120 days.

2.3 Condition analysis

White muscle samples from the left dorsal
anterior part of the body (100—200 mg) of fish
representative of all sampling dates ranging
from 65 to 77 mm in total length (n=96) were
used for RNA : DNA ratio assay. Nucleic acids
were quantified using the method described by
GONCALVES et al. (2011). A fluorometer
Shimadzu RF-1501 (Shimadzu, Kyoto, Japan)
was used and its detection limits and linear
range were tested by fluorescence of serial
dilutions of DNA and RNA standards (DNA
activated from calf thymus, RNA type IV from
calf liver, Sigma, St. Louis, MO). The recovery
rates of DNA and RNA standard spikes in the
rockfish muscle homogenates were 105.4 and
99.0% respectively (n=>5). Method precision
was tested by replicate muscle homogenate
(n=5) and found to be 97.1%. Sample
autofluorescence and residual fluorescence
were negligible. Muscle homogenates were used
to estimate total proteins based on a modified
Lowry method kit (Pierce, USA) using bovine
serum albumin as standard. Fulton’s K, a
morphometric condition index was also applied
to all individuals, using K= W/L?; where W is
the fish eviscerated weight (g) and L is the fish
total length (mm).

2.4 Data analysis

Data are shown as mean*standard deviation
unless otherwise stated. All variables were
screened for normality with Shapiro-Wilk’s
test and for inequality of variance with
Levene’s test. Variable of RNA : DNA ratio re-
quired a common log (1+x) transformation.

DGI variables were tested for differences
among extrusion months and sites, while con-
dition variables were tested for differences
amongst capture months and sites. The differ-
ences were assessed by two-way analysis of
variance (ANOVA) followed by Student-
Newman-Keuls (SNK) post hoc multiple com-
parisons test when applicable. Relationship
between condition indices and growth rates of
otolith marginal increments (10-day mean) for
different age classes by 30 days (70—100, 100—
130 and 130 — 160 days) was tested with
Pearson’s correlation coefficient test. The same
analysis was also applied to examine the rela-
tionship between duration and growth rate
during Pl period, and the relationship between
early life variables (Table 1) and cumulative
water temperature, represented by the thermal
sum calculated for each life stage.

In order to further extend and enhance data
comprehension, a multivariate approach was
performed by means of canonical discriminant
analysis (CDA), using DGI extracted data and
also condition indices. By analysing these vari-
ables in an integrative perspective, CDA pro-
vides an estimate for the degree of separation
of life history and nutritional traits among dif-
ferent extrusion groups (or different sampling
months) and between distinct study sites.

The CDA output is presented in z-1 discrimi-
nant functions (DF) scores, where z is the
number of groups in the analysis and a DF is a
linear combination of the original variables
that best separate the groups. Variables load-
ing the DF’s were retained when their loading
weights were=0.5 (HAIR et al., 2000) and the
efficiency of the discriminatory analysis was
assessed with Wilk’s lambda test ( 2 ). All
analyses were performed with the statistical
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Table 2. Sampling data of Sebastes inermis juveniles captured in Sajima and Aburatsubo in 2010

S li Total length
ampung N oratieng Range Weight (g) Range
month (mm)

May 66 62.8+£4.5 43.1—69.3 3.8£0.6 1.5—4.6
Aburatsubo June 50 72.5+8.6 51.4—87.2 6.4+2.2 2.1—-11.7
July 74 72.9+3.5 56.6—179.3 6.60.8 3.3-1.8

May 92 65.01t4.2 44.0—83.5 4.3+2.0 1.4—9.4
Sajima June 256 80.2+9.3 55.6—101.3 9.3+3.3 2.4—16.3
July 12 87.9+2.8 83.4—92.2 11.5+1.9 10.2—13.2

Total length and weight are shown as mean=SD

software package STATISTICA 8.0 (Statsoft,
Inc., OK, USA), and significance level was set
to P<0.05.

3. Results
3.1 Sampling composition and temperature

Samples from Saj represented 65.2% of the
total of captured juveniles (N=550) and
reached the maximum number (46.3%) during
June (Table 2). In Abt, the capture was more
homogeneously distributed among sampling
months. Total length and weight of sampled S.
tnermis ranged from 43 to 101 mm and from 1.2
to 19.5 g, respectively, with juveniles in Saj pre-
senting higher mean values than those in Abt.
In both sites mean total length of samples in-
creased with time (sampling months).

The lowest SST values (Fig. 3) were recorded
in late January and early February (11.3 °C)
for Saj, and in mid January and mid February
(11.6 °C) for Abt. Mean monthly SST varied
significantly (Two-way ANOVA; SNK test; P
<0.001) but did not show any statistical differ-
ences between sites (P>0.05).

3.2 Otolith microstructure

Otolith-based estimates of age indicated that
rockfish juveniles (n=219) ranged from 88 to
159 (123%£18.7) days old after extrusion. Lin-
ear regressions fitted to the relationships be-
tween total length and otolith radius @
=0.79), between age and otolith radius (7
=0.64), and between age and fish length (
=0.63).

From extrusion pattern (Fig. 3a), we ob-
served several monthly extrusion peaks, start-
ing in late December until early March. This

distribution was represented by a single peak
for all extrusion groups with the exception of
January group in Saj which showed three over-
lapping peaks. For Saj the higher frequency
was observed in early groups (Dec and Jan),
while for Abt in later groups (Feb and Mar).
Although some extrusion peaks seem to be syn-
chronous with new moon phases, this occur-
rence was not consistent among all extrusion
groups: some peaks appeared before and other
peaks did after the new moon phases.

Settlement pulses in both sites (Fig. 3b) ex-
tended from February to May and were not
closely synchronous with the moon cycle. In
Saj, the majority of individuals settled in late
February and March. In Abt, as observed for
the extrusion dates (Fig. 3a), the settlement
showed distinct but more indiscernible pulses
within time.

Transition centered method (Fig. 4) allowed
the reduction of the age effect for each extru-
sion group regarding growth rates before and
after settlement. All groups showed an abrupt
increase in increment width during the transi-
tion from Pl to Ps stages.

Fish that extruded in January (Table 3)
stayed for shorter periods and grew less in Pl
stage achieving smaller sizes at settlement.
They grew less in Ps I stage achieving smaller
size at 120 days. Fish that extruded in March
stayed longer and grew more in Pl stage thus
achieved bigger sizes at settlement. Despite the
shorter period, they grew more in Ps I stage.
There was a decreasing trend in the variables
(except Pl growth rate) from fish that ex-
truded in December to January, followed by an
increase, except in Ps I stage duration of March
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Fig. 3. Frequency of extrusion dates (a) and settle-
ment dates (b) of Sebastes inermis in Sajima and
Aburatsubo in 2010. Extrusion is shown for re-
spective sampling months: May (open), June
(grey), and July (closed). Dotted lines indicate
sea surface temperature (SST). Lunar cycles are
shown above with full moon (open circle) and
new moon (closed circle).

extruded group, although significance was not
always true. Individuals from Saj grew more
during Pl stage and were bigger at settlement
than those from Abt. Although there were no
significant differences in Ps I growth rate be-
tween the two sites, the individuals from Abt
stayed longer period in Ps I stage than those
from Saj.

Longer Pl stage reflected higher growth
rates (Fig. 5) in both sites (Pearson correla-
tion test; r=0.24, P=0.04 for Saj; r=0.49, P
=0.002 for Abt). The relationship was similar
within each extrusion group of each site with
the exception of February, showing a signifi-
cant negative relationship in both sites (r=
-0.60; P=0.04 for Saj; r=-0.11; P=0.02 for
Abt). The DGI variables increased with cumu-
lative temperature in each site with high sig-
nificant correlations (Table 4).

3.3 Nutritional condition

Juveniles sampled in May had less proteins
and lower condition index Fulton’s K (Table 5),
while in June we observed the opposite. Re-
gardless of sites, the RNA : DNA ratios of in-
dividuals sampled in May were the highest (P
<0.0001), thereafter it decreased in succeeding
months. We found a significant difference in
RNA : DNA ratio of juveniles sampled in July:
the ratios in Saj were higher than that in Abt
(P=0.013). Individuals from Abt had lower
RNA : DNA ratios, total proteins, and Fulton’s
K values than individuals from Saj.

Otolith marginal increment widths of indi-
viduals aged 100—130 days after extrusion was
positively related with both RNA : DNA ratio
(r=0.41, P=0.013) and total proteins (r=0.38,
P=0.022), while Fulton’s K, although not sig-
nificant, was negatively related with the
otolith growth rate (r=-0.12, P=0.21). The re-
lationship between otolith marginal growth
rate and condition indices of other age classes
followed the same tendency, although not pre-
senting significant coefficients (age class of 70—
100 days: r=0.33, 0.31 and —0.04; age class of
130 — 160 days: r=0.67, 0.25 and —0.82 for
RNA : DNA ratio, total proteins, and Fulton's
K, respectively; P> 0.05).



20 -

181

£

=2

= 16 -

<

whd

o

S 14

rer)

c

g 12 4 1]

g 1 \: ," ',—>\, \\ :\
10 4 /TYE Lo 8" %)

s CVORNARY

= 3 20D A%

o / ‘.r o

o

= N

La mer 51, 2013

4 T T T T T T T T T
10 -9 -8 -7 -6 -5 -4 -3 -2

-1

01 2 3 45 6 7 8 9 10

Increment number from settlement

Fig. 4. Otolith increment width before and after settlement based on the transition centered method applied
to each extrusion group in Sajima and Aburatsubo. Groups represented using: December (<>), January
(), February ([), and March (O) with open symbols for Sajima (dashed line) and filled symbols for

Aburatsubo (solid line).

3.4 Multivariate approach

Based on the canonical correlation patterns
of the 11 different DGI variables (Table 1), Saj
and Abt were well separated (Table 6). The
variables related to Pl and Ps stage, supported
this discrimination, which was shown by the
great difference between the group centroid
scores, and 82% of the individuals were cor-
rectly classified. The extrusion groups were
highly discriminated (Fig. 6a) with a clear dis-
tinction between the early groups (Dec and
Jan) and the late (Feb and Mar) groups
mostly based on Pl stage related variables (Ta-
ble 6). This classification was successful in 78%
of the cases and the first two discriminant
functions explained 90% of the total variance
among the extrusion groups.

The CDA based on condition variables
showed a strong discrimination between the
sites, mainly owing to RNA : DNA ratio, with
84% of correct classification (Table 6). The
higher centroid score for Saj showed a higher
mean RNA : DNA ratio when compared with
Abt. Sampling months separation based on nu-
tritional condition data (Fig. 6b) was also ob-
served (77% of correct classification) and
RNA : DNA ratios and total proteins were the
variables with higher effects (loads) in the
analysis. Hence, when compared with the mor-
phometric condition index (Fulton’s K), the
biochemical condition indices (RNA : DNA ra-
tio and total proteins) were more relevant to
the temporal discrimination.
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Table 3. Mean values of DGI variables for the different extrusion groups for Sajima and Aburatsubo extracted

from otoliths of the rockfish Sebastes inermis

Extrusion groups

December January February March Total
(n=50) (n=67) (n=44) (n=58)

P1 period duration Abt 473" 41£3° 4944 5444 47+4

(days) Saj 50+4° 49+3 AT+ 51+3" 19+3
Total 493" 45+3" 48+3"¢ 531+4°

Ps I period duration Abt 65+4" 574" 664" 573" 624"

(days) Saj 606" 55+4" 604" 52+5" 56+5
Total 625" 56+4° 634" 55+4*°

Pl growth rate Abt 0.33£0.04* 0.35+0.04" 0.380.04" 0.41£0.03" 0.36+0.04"

(mm /day) Saj  0.41+0.04"  0.38+0.05°  0.42+0.04"  047+0.07°  0.43+0.05
Total 0.37+0.04" 0.37+0.04" 0.41£0.07"° 0.44+0.08°

Ps I growth rate Abt 0.50+0.05" 0.50%0.05" 0.54%0.04" 0.55+0.02* 0.52+0.04

(mm/day) Saj 0.55+0.05* 0.53+0.07" 0.54%0.09" 0.57%0.06" 0.55+0.07
Total 0.5310.05 0.52+0.06 0.5410.07 0.560.04

Length at settlement Abt  22.0£3.4° 20.4+4.0" 23.4+4.1" 27.5+3.3 23.4+14.0"

(mm) Saj 24.5+5.2 23.0+3.7 25.8£2.5" 30.1+4.7 25.9+4.1
Total  23.4+4.3"¢ 21.7+3.8" 24.6+3.3"¢ 28.7+4.0°

Length at 120 days Abt 61.8+4.5° 59.6£4.0° 61.3£3.2° 63.4+1.8" 61.5£3.5

(mm) Saj 62.2+4.9° 61.4£3.1° 65.41+4.8" 63.3+1.6" 62.4£3.6
Total 62.0£4.7 61.0£3.4 63.4£3.8 63.3£1.7

Abbreviations: Pl —planktonic; Ps I—first period of post-settlement; Abt —Aburatsubo; Saj—Sajima; 120 days

after extrusion was found in 92% fish aged

ab

represents significant differences among extrusion groups in each study area,

"% indicates significant differ-

ences among extrusion groups with both areas combined, and asterisk ( *) represents significant differences be-
tween study sites. Data are shown as mean=SD; two-way ANOVA;SNK; P<0.05

4. Discussion

The settlement patterns and the nutritional
status exhibited by S. inermis juveniles in the
two bays from Miura Peninsula in central Ja-
pan were investigated in the present study. The
larvae from the early extrusion groups (Dec
and Jan) experienced lower temperatures dur-
ing the Pl period than the later groups (Feb
and Mar), and the larvae from the early
groups remained in planktonic habitat for
shorter periods with lower growth rates. This
phenomenon was confirmed by the correlation
between the cumulative SST and DGI data (Ta-
ble 4) and by a clear seasonal discrimination of
early (winter) and late (spring) extrusion
groups (Fig. 6a, Table 6). Settlement timings
seemed to depend on environmental conditions:
the larvae settled earlier at smaller sizes when

they experienced unfavorable conditions (e.g.
lower temperature) during the Pl period and
grew more after settlement (Fig. 4). This pat-
tern could be interpreted as one adaptive strat-
egy of this species to maximize the growth rate
and enhance survival during the early life
stages in different environmental conditions,
and here it was found to be related with tem-
perature as found in other species (LOCKETT
and SUTHERS, 1998, ALVAREZ et al, 2012).
HURST et al. (2005) refers to the increasing
growth rate in juveniles as a “compensatory
growth” mechanism, in response to tempera-
ture reduction and growth history of the indi-
viduals. The same mechanism might help to
explain the early settlement and respective
higher growth rates after settlement found in
early groups (Dec and Jan).
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PrLaza et al. (2003) found that settlement
pulses in S. inermis into seagrass areas were in-
duced by selective tidal currents, with govern-
ance by semi-lunar cycles crucial for the active
migration of these larvae into nearshore areas.
However, our results indicated a weak synchro-
nism of extrusion dates and spring tides, and a
much weaker relation between tidal variation
and the settlement pattern of larvae in both
sites (Fig. 3). Although the cause of such dif-
ferences i1s not clear, tidal variation does not
seem to be the main determinant of habitat
shift from planktonic to benthic life in S.
inermis larvae in our case study. Therefore,
further studies will need to examine the effects
of abiotic factors in the future.

Duration and growth rate of Pl stage corre-
lated positively in both sites (Fig. 5) in all ex-
trusion groups except in February where this
relation was negative. MIZUSAWA et al. (2004)
also found a negative relationship between
these variables for individuals from two sites in
similar geographic area, but those authors ex-
amined a shorter extrusion period. We believe
that temperature is the main factor responsible
for the positive relationship of these variables,
as a cue to the reaction norm in their adaptive
strategy as discussed above. Nevertheless, we
also believe the negative trend found in Febru-
ary group could be explained by the presence of
an ontogenetic stabilizing effect. Because size is
related to the product of growth rates and
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Table 4. Pearson correlation coefficients between DGI variables and the respective cumulative SST (°C) for

Sajima and Aburatsubo

DGI variable Correlation coefficient P-value
Pl growth rate 0.82 <0.0001
Pl duration 0.92 <0.0001
Sajima Ps I growth rate 0.43 0.015
(n=12D Ps I duration 0.97 0.001
Length at settlement 0.67 <0.0001
Length at 120 days 0.51 0.003
Pl growth rate 0.86 <0.0001
P1 duration 0.91 <0.0001
Aburatsubo Ps I growth rate 0.58 0.0003
(n=108) Ps I duration 0.96 0.041
Length at settlement 0.79 <0.0001
Length at 120 days 0.45 0.004

Abbreviations: Pl—planktonic; Ps I—first period of post-settlement; 120 days after extrusion was found in 92%

fish aged; Pearson correlation significant for P<0.05

Table 5. Condition indices for the rockfish Sebastes inermis in Sajima and Aburatsubo at different sampling

dates
Sampling month Total

May (n=31) June (n=33) July (n=32)
RNA : DNA ratio Abt 1.92+0.54* 1.43£0.27" 1.05+0.19° 1.32+0.47"
Saj 1.97+0.42 1.760.51" 1.99+£0.37 1.88+0.33

Total 1.95+0.68" 1.59+0.41° 1.31+0.28¢
Total proteins Abt 37.65+3.81" 50.2£2.21° 47.37+7.83"™ 44.00+4.13"
(1 g/mg tissue) Saj 43.45+4.86" 63.4+5.68° 51.6545.72< 47.766.28

Total 41.73+5.62" 52.90+3.39° 48.44+6.74"
Fulton’s K Abt 1.55+0.20 1.68+0.16" 1.72+0.11" 1.66+0.16
Saj 1.68+0.22" 1.86+0.20° 1.75£0.17" 1.70+0.21

Total 1.64+0.22 1.75+0.17 1.71£0.12

Abbreviations: Abt— Aburatsubo; Saj—Sajima

ab,e,d

represent significant differences among sampling months from each study site,

%% indicate significant dif-

ferences among sampling months with both sites combined, and asterisk (*) represent significant differences
between study sites. Data are shown as mean=SD; two-way ANOVA; SNK; P<0.05

period duration, respective settlement sizes will
be stabilized if there is a negative relationship
between the growth rates and duration of the
Pl stage, even if individual variability in
growth rates is present within a group. This
suggested scenario is schematized in Fig. 7.
Regarding the planktonic stage duration,
CHAMBERS and LEGGETT (1987) suggested that
a negative relationship between growth rate
and duration of larval period is favorable to

larval survival: larvae that grow faster stays
shorter period in vulnerable stage and enhances
survival probabilities (i.e. “stage duration”
mechanism). The results for the reaction norm
to different temperature observed in the pre-
sent study were not conformable to such hy-
pothesis so other growth-related mechanism
might be occurring in this case. TAKASUKA et
al. (2004) refers that longer planktonic periods
can be advantageous for a successful recruit-
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Table 6. Summary of the discriminant analysis (CDA) performed on overall dataset regarding Sebastes inermis
juveniles in order to identify: sites and extrusion groups based on DGI variables; sites and sampling

months based on nutritional condition indices

Discriminant DGI Nutritional condition indices
parameters Site Extrusion group Site Sampling month
Wilk’s
0.89 0.67 0.67 0.54
Lambda (1)
F value 2.56" 2.88"" 15.01"" 11.047"
Variability DF1I DF1 DF?2 DF1I DFI DF?2
explained (%) 100 59.1 31.4 100 86.3 13.7
Variables Length at PI growth Otolith RNA : DNA  Total proteins () RNA : DNA
loading settlement rate radius at end ratio ratio
Otolith radius Length at of Ps 1
at end of Ps I  settlement Ps I duration
Ps I duration  Otolith radius Ps I growth
at end of Pl rate ()
Centroids of  Saj (-0.19) December December Saj (0.55) May (0.88) May (0.0D
the groups Abt (0.62) (-0.39 (0.45) Abt (-0.87) June (-0.78)  June (0.55)
(discriminant January January July (-0.72)  July (-0.35)
scores) (-0.22) (-0.2D)
February February
0.9 (0.56)
March (1.62) March
(-0.52)
Classification g, , 78.3 83.9 77.2

success (%)

* P<0.05, * * P<0.001; () indicates variable loading the discriminant function negatively

Abbreviations: DF1,2-discriminant functions 1,2

ment since the probability of larvae to be trans-
ported to favorable nursery grounds is higher.
It seems that the individuals here studied
might be adopting such strategy (i.e. December
and January groups in Sajima), yet further in-
vestigation should be conducted to clarify this
issue.

Regarding the first hypothesis of our study
(Hy, settlement of S. inermis along Miura Pen-
insula coast presented temporal differentia-
tion. The larval adaptive strategy as a reaction
to different water temperature was the main
determinant of the settlement.

Several aspects help to interpret the geo-
graphical range of the larval transport and set-
tlement: the clear differences in the pattern of

daily extrusion and settlement between the
study sites with earlier extrusion in Saj (Fig.
3a), the significant differences of Pl growth
rate and Ps I duration between the sites (Table
3, Fig. 5), and the clear differentiation of sites
using DGI data, concerning variables related
with the Pl and Ps stages (Table 6). We sug-
gest that the groups in both bays are highly
separated and larval distribution offshore is
unlikely. The differences between the sites as
stated above would be eliminated if this off-
shore mixing had occurred. Concerning the sec-
ond tested hypothesis (H,), larval transport
and settlement occurred separately for each
bay, and migration if it occurs, seems to be
confined to a small geographical range around
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Fig. 6. Canonical discriminant analysis (CDA) based on DGI variables (a) and on nutritional condition indices
(b) for rockfish juveniles: a) Canonical discriminant scores of the four extrusion groups from both sites
combined, based on the first two discriminant functions (DF1&2) with 78% of individuals successfully clas-
sified. Groups represented using: December (), January (A), February (), and March (@), b) Canoni-
cal discriminant scores of the three sampling months from both sites combined, based on the first two
discriminant functions (DF1&2) with 77% of individuals successfully classified. Months represented as:
May (X), June () and July (O).
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Fig. 7. Diagram of the relationship between Pl duration and Pl growth rate. Ellipses show the range of vari-
ability in each extrusion group. Solid arrow shows the direction of reaction norm to different tempera-
ture for different extrusion groups. Dashed arrows show the direction of individual’s variability within
each extrusion group caused by an ontogenic stabilizing effect.

each bay.

Average total length of settled juveniles in-
creased amongst sampling dates in both sites
(Table 2). The fact that individuals from early
groups (Dec and Jan) were scarce or absent
from the later sampling months (Fig. 3a) sug-
gests a possible ontogenic movement of juve-
niles to adjacent nearshore areas in each site
after several months after settlement. Gear se-
lectivity effect was considered negligible partly
because adults were also captured and partly
because HARADA (1962) also described a short
distance movement of post-juveniles to adjacent
areas in this species. Such movement could be
happening in a possible response to a change in
resource requirements and vulnerability to
predation (LOVE et al., 1991). From the results
of the present study, it is not possible to deter-
mine the geographic scale of such movement,
therefore, a broader study on the sub adult and
adult population is recommended to fully as-
sess this issue.

Differences found in condition indices (Table
5) indicated that juveniles from Saj are in over-
all better physiological status. This conclusion
was supported by CDA (Table 6), where RNA :
DNA ratio was determinant. This index is cor-
related with food availability and is a good in-
dicator of the nutritional condition (GARCIA et
al., 1998, GEIGER et al., 2000, IsLaM and
TANAKA, 2005). Based on this relationship, the
higher values of RNA : DNA ratio found in ju-
veniles from Saj reflect higher energetic re-
serves after settlement as observed in other
species (VASCONCELOS et al., 2009). On the
other hand, the lowest indices found in juve-
niles from Abt might reflect a lower survival
potential, as also found in other species (BLACK
and LovE, 1986, PASTOUREAUD, 1991).

Based mainly on the biochemical condition
indices rather than the morphometric condition
index, S. inermis juveniles at the settlement
ground were clearly discriminated among sam-
pling months (Fig. 6b). In addition, RNA :
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DNA ratio and total proteins correlated posi-
tively with the increment widths of the otolith
margin. It suggests that there is a positive re-
lationship between fish condition and growth
rates as found in other species (MALLOY and
TARGETT, 1994, BUCKLEY et al., 1999, RAMIREZ
et al. 2004). The use of all condition indices (to
our knowledge, this is the first time assess-
ment for this species) allows an ecological
evaluation of fish habitat (LLORET et al., 2001,
IsLAM et al., 2006, VASCONCELOS et al., 2009).
Our case showed that Sajima Bay is a higher-
quality nursery ground with more suitable
characteristics for S. inermis early stage devel-
opment, which supports the third hypothesis
(H;). Saj has larger canopy areas which pro-
vide higher protection to the settled juveniles.
In addition, the water in this bay may present
higher nutrient enrichment since there is an in-
fluence of a stream in this area, and this may
bring ecological benefits (e.g. LLORET et al.,
2001).

The present study provided basic biological
information on the early life of S. inermis. The
results enabled the differentiation of two geo-
graphical groups using an integrative analysis
of life traits and nutritional condition. Further
studies will need to focus on a larger temporal
range and on adult populations to enhance the
comprehension of inshore/offshore connec-
tivity of populations, for this commercially im-
portant species in Japan.
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Early life history of the rockfish Sebastes inermis inferred from otolith microstructure and
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